Generating Vascular Graft Luminal and Medial Layers Based on Multipotent Stem Cel

基于多能干细胞生成血管移植管腔和内侧层

基本信息

  • 批准号:
    8692757
  • 负责人:
  • 金额:
    $ 7.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In the US alone, approximately 1.4 million patients require small-caliber (< 6 mm ID) coronary artery or peripheral vessel grafts each year. Over 10% of these patients have no suitable autologous vessels for grafting. However, current synthetic prostheses, such as expanded polytetrafluoroethylene (ePTFE) grafts, display high failure rates in small-diameter applications. Tissue engineered vascular grafts (TEVGs) are therefore being actively developed for small-caliber applications. Although significant progress has been made, TEVG clinical viability has been hampered by: 1) thrombogenicity resulting from inadequate endothelialization, 2) the frequent need for pre-implantation cell and/or construct culture, 3) short- and long-term compliance mismatch between graft and host tissue, and 4) inadequate long-term mechanical strength resulting from insufficient neomatrix deposition by associated cells. We propose to address these limitations by developing a multilayered vascular graft (MLVG) which: 1) allows immediate formation of a stable, luminal cell lining for short- and long-term thromboresistance, 2) incorporates medial and luminal hydrogel layers specifically designed to direct human adipose-derived mesenchymal stem cells (ASCs) toward vascular smooth muscle cell (VSMC) or endothelial cell (EC) fates, respectively, 3) combines these hydrogels with a central electrospun mesh designed for short-term compliance-matching, and 4) includes an electrospun sleeve providing for burst strength, adventitial cell recruitment, and vaso vasorum ingrowth. The proposed studies will focus on developing the proposed medial and luminal hydrogel layers. Towards this end, we will execute the following Specific Aims: AIM 1: Identify growth-factor laden, PEG hydrogel formulations inductive of ASC differentiation into VSMC-like phenotypes and medial layer-appropriate extracellular matrix synthesis. AIM 2: Identify growth factor-laden, PEG "cement" formulations that promote ASC differentiation into EC-like phenotypes.
描述(由申请人提供):仅在美国,大约有140万患者需要每年小疗效(<6 mm ID)冠状动脉或外围血管移植物。超过10%的患者没有合适的自体血管进行嫁接。然而,当前的合成假体,例如扩展的聚氟乙烯(EPTFE)移植物,在小直径应用中显示出较高的失败率。因此,组织工程的血管移植物(TEVG)是针对小疗程的应用而积极开发的。尽管已经取得了重大进展,但TEVG临床生存能力受到以下方面的阻碍:1)由内皮化不足导致的血栓形成性,2)经常需要对植入前细胞和/或构建培养的需求,3)长期和宿主组织之间的短期和长期不匹配,以及4)长期的机械强度不足。 We propose to address these limitations by developing a multilayered vascular graft (MLVG) which: 1) allows immediate formation of a stable, luminal cell lining for short- and long-term thromboresistance, 2) incorporates medial and luminal hydrogel layers specifically designed to direct human adipose-derived mesenchymal stem cells (ASCs) toward vascular smooth muscle cell (VSMC) or endothelial cell (EC)命运分别为3)将这些水凝胶与专为短期合规性匹配设计的中央电气传播网格结合在一起,4)包括一个电纺套筒,可提供爆发强度,外胞体细胞募集和Vaso vasorum vasorum infrowth。拟议的研究将着重于开发提出的内侧水凝胶层。为此,我们将执行以下特定目的:目标1:确定载体,PEG水凝胶配方的ASC分化为VSMC样表型和内侧层 - 适合细胞外基质合成。 AIM 2:确定富含生长因子的钉子“水泥”制剂,可促进ASC分化为EC样表型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mariah S Hahn其他文献

Mariah S Hahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mariah S Hahn', 18)}}的其他基金

TOWARD 3D HUMAN BRAIN-LIKE TISSUES FOR TARGETING DYSREGULATED SYNAPSE AND PROTEOSTASIS MECHANISMS IN ALZHEIMER'S DISEASE
针对阿尔茨海默病中突触失调和蛋白质稳态机制的 3D 类人脑组织
  • 批准号:
    10025436
  • 财政年份:
    2020
  • 资助金额:
    $ 7.77万
  • 项目类别:
TOWARD 3D HUMAN BRAIN-LIKE TISSUES FOR TARGETING DYSREGULATED SYNAPSE AND PROTEOSTASIS MECHANISMS IN ALZHEIMER'S DISEASE
针对阿尔茨海默病中突触失调和蛋白质稳态机制的 3D 类人脑组织
  • 批准号:
    10263966
  • 财政年份:
    2020
  • 资助金额:
    $ 7.77万
  • 项目类别:
TOWARDS ELECTRICALLY ENRICHED MESENCHYMAL STEM CELLS FOR TREATMENT OF EARLY INFLAMMATORY OSTEOARTHRITIS
利用电富集间充质干细胞治疗早期炎症性骨关节炎
  • 批准号:
    9809453
  • 财政年份:
    2019
  • 资助金额:
    $ 7.77万
  • 项目类别:
Macrophage And Fibroblast Modulation Toward Chronic Vocal Fold Scar Restoration
巨噬细胞和成纤维细胞对慢性声带疤痕修复的调节
  • 批准号:
    8713011
  • 财政年份:
    2014
  • 资助金额:
    $ 7.77万
  • 项目类别:
Macrophage And Fibroblast Modulation Toward Chronic Vocal Fold Scar Restoration
巨噬细胞和成纤维细胞对慢性声带疤痕修复的调节
  • 批准号:
    8841337
  • 财政年份:
    2014
  • 资助金额:
    $ 7.77万
  • 项目类别:
Macrophage And Fibroblast Modulation Toward Chronic Vocal Fold Scar Restoration
巨噬细胞和成纤维细胞对慢性声带疤痕修复的调节
  • 批准号:
    9059691
  • 财政年份:
    2014
  • 资助金额:
    $ 7.77万
  • 项目类别:
Macrophage and Fibroblast Modulation Toward Chronic Vocal Fold Scar Restoration
巨噬细胞和成纤维细胞对慢性声带疤痕修复的调节
  • 批准号:
    9238202
  • 财政年份:
    2014
  • 资助金额:
    $ 7.77万
  • 项目类别:
Generating Vascular Graft Luminal and Medial Layers Based on Multipotent Stem Cel
基于多能干细胞生成血管移植管腔和内侧层
  • 批准号:
    8441862
  • 财政年份:
    2013
  • 资助金额:
    $ 7.77万
  • 项目类别:
Tissue Engineering Evaluation of Material Implants for Vocal Fold Restoration
声带修复材料植入物的组织工程评估
  • 批准号:
    7850307
  • 财政年份:
    2009
  • 资助金额:
    $ 7.77万
  • 项目类别:
Tissue Engineering Evaluation of Material Implants for Vocal Fold Restoration
声带修复材料植入物的组织工程评估
  • 批准号:
    7387803
  • 财政年份:
    2007
  • 资助金额:
    $ 7.77万
  • 项目类别:

相似国自然基金

促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
  • 批准号:
    82370515
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
  • 批准号:
    82360301
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
  • 批准号:
    82302691
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
  • 批准号:
    82372389
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Biofilm Paradigm Explaining Clinical Implant-Associated Illness.
解释临床植入相关疾病的新型生物膜范式。
  • 批准号:
    10515767
  • 财政年份:
    2022
  • 资助金额:
    $ 7.77万
  • 项目类别:
Novel Biofilm Paradigm Explaining Clinical Implant-Associated Illness.
解释临床植入相关疾病的新型生物膜范式。
  • 批准号:
    10629428
  • 财政年份:
    2022
  • 资助金额:
    $ 7.77万
  • 项目类别:
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
  • 批准号:
    10326864
  • 财政年份:
    2021
  • 资助金额:
    $ 7.77万
  • 项目类别:
Xanthine oxidase inhibition raises intracellular purines to activate AMPK, improve glucose control and decrease fatty liver and atherosclerosis in type 2 diabetes
黄嘌呤氧化酶抑制可提高细胞内嘌呤以激活 AMPK,改善血糖控制并减少 2 型糖尿病患者的脂肪肝和动脉粥样硬化
  • 批准号:
    9274280
  • 财政年份:
    2016
  • 资助金额:
    $ 7.77万
  • 项目类别:
Injectable Macroporous Matrices to Enhance Stem Cell Survival and Craniofacial Repair
可注射大孔基质增强干细胞存活和颅面修复
  • 批准号:
    9264933
  • 财政年份:
    2016
  • 资助金额:
    $ 7.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了