Injectable Macroporous Matrices to Enhance Stem Cell Survival and Craniofacial Repair
可注射大孔基质增强干细胞存活和颅面修复
基本信息
- 批准号:9264933
- 负责人:
- 金额:$ 3.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-25 至 2019-03-24
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdipose tissueAffectAgeAllograftingAutologousBiochemicalBiocompatible MaterialsBiologyBiomimeticsBlood VesselsBone MatrixBone RegenerationBone TissueCell ProliferationCell SurvivalCell TherapyCellsCephalicCollagenCommunicable DiseasesCongenital AbnormalityDefectDepositionDevelopmentDimensionsDiseaseEconomic BurdenEngineeringEngraftmentExcisionExtracellular MatrixFaceGelatinGrowth FactorHA coatingHarvestHumanHydrogelsHydroxyapatitesIn SituIn VitroIndividualInfiltrationInflammatoryInjectableInjection of therapeutic agentLeadLigandsMechanicsMesenchymal DifferentiationMesenchymal Stem CellsMineralsModelingMorbidity - disease rateMusOperative Surgical ProceduresOrganic solvent productOsteogenesisOutcomePatientsPolymersPopulationPorosityProteinsProtocols documentationReportingShapesSiteSocietiesStem cellsStressStromal CellsStructureSupporting CellSystemTissue DonorsTissue EngineeringTissue GraftsTissuesTraumatic injuryUnited StatesVascularizationWorkallogenic bone transplantationbasebonebone losscell typechemical propertyclinically relevantconventional therapycraniofacialcraniofacial repaircrosslinkdensitydesignhydrophilicityimmunogenicityimprovedin vivoin vivo regenerationinterdisciplinary approachlong bonematerials sciencemigrationminimally invasivenovelosteogenicphysical propertypublic health relevancerepairedscaffoldsocioeconomicsstem cell differentiationsymposiumtissue regenerationtissue repair
项目摘要
DESCRIPTION (provided by applicant): Bone loss affects millions of patients in the United States annually and can be caused by traumatic injury, inflammatory and infectious diseases, congenital malformation or oncologic resection. Conventional treatment often involves using autologous or allograft bone tissues, which is limited by donor site morbidity, insufficient donor tissue supply, and potential immunogenicity. Stem cell-based therapy offers a promising approach for the repair of bone loss such as cranial and long bone defects. However, a critical barrier to progress in the field is the lack of suitable cell carriers that can support stem cell survival, and guide vascularized and mineralized bone formation in situ without the addition of supraphysiological concentration of growth factors. To address the above challenges, my proposed multidisciplinary approach aims to validate the efficacy of microribbon-based scaffolds as a novel type of cell carrier for enhancing stem cell survival and mineralized bone matrix deposition in vivo using a mouse critical size cranial defect model. Our µRB- like hydrogels were fabricated by wet-spinning gelatin (digested collagen), the most abundant ECM matrix protein, into µRB-like structures, which can be crosslinked into a macroporous scaffold. The resulting hydrogels combine the injectability and cell-encapsulation ability of standard hydrogels with the macroporosity that facilitates faster vascular ingrowth, cell proliferation, adhesion, migration, and ECM deposition. This injectable system empowers minimally invasive surgery for a broad range of diseases. In our preliminary studies, µRB-based matrices markedly enhanced the survival of human adipose-derived stromal cells (ASCs) and accelerated tissue regeneration in vivo. Here I propose to further enhance the osteoinductivity and osteoconductivity of µRB-like hydrogels by tuning µRB stiffness, bulk stiffness and hydroxyapatite coating. I hypothesize that osteogenic differentiation of human mesenchymal stem cells (MSCs) in microribbon-based scaffolds can be enhanced by increasing the µRB stiffness and hydroxyapatite coating of microribbons. Furthermore, I hypothesize that increasing bulk stiffness of the scaffold will result
in reduced matrix deposition due to decreasing pore size. Overall, the macroporosity of microribbon-based scaffolds would lead to enhanced cell survival, faster vascularization and enhanced bone tissue formation in vivo compared to convention biomaterials. The outcomes of the proposed work would lead to the development of new tissue engineering therapy for treating craniofacial and other large bony defects, and correspondingly reduce the associated socio-economical burden on society.
描述(由适用提供):骨质流失每年影响美国数百万患者,可能是由创伤性损伤,炎症和传染病,先天性畸形或肿瘤学切除引起的。常规治疗通常涉及使用自体或同种异体移植骨组织,这些骨组织受供体部位的发病率,供体组织供应不足和潜在的免疫原性的限制。基于干细胞的疗法为修复骨质流失(例如颅骨和长骨缺损)提供了有希望的方法。但是,该领域进展的关键障碍是缺乏可以支持干细胞存活的合适细胞载体,并在不加入生长因子的超生理浓度的情况下引导血管化和矿化骨形成。为了应对上述挑战,我提出的多学科方法旨在验证基于微孔的支架作为一种新型细胞载体的效率,用于增强干细胞存活和使用小鼠临界大小颅底缺陷模型在体内增强干细胞存活和矿化骨基质沉积。我们的µRB样水凝胶是通过湿旋蛋白(消化的胶原蛋白)(最丰富的ECM基质蛋白)制成的,将其切成类似µRB的结构,可以将其交联成大孔脚手架。所得的水凝胶结合了标准水凝胶的注射性和细胞囊化能力与促进更快的血管内部,细胞增殖,粘合剂,迁移和ECM沉积的宏观质量。这种注射系统可为多种疾病提供最小的侵入性手术。在我们的初步研究中,基于µRB的矩阵显着增强了人脂肪衍生的基质细胞(ASC)和体内加速组织再生的存活。在这里,我建议通过调整µRB刚度,散装刚度和羟磷灰石涂层来进一步增强µRB样水凝胶的骨诱导和骨传导性。我假设通过增加微孔的µRB刚度和羟磷灰石涂层,可以增强基于微邻苯的支架中人类梅塞氏干细胞(MSC)的成骨分化。此外,我假设会导致脚手架的散装刚度增加
在减小孔径降低的基质沉积中。总体而言,与惯例生物材料相比,基于微孔基的支架的宏观速度将导致细胞存活,更快的血管形成和体内骨组织形成增强。拟议工作的结果将导致开发新的组织工程疗法,用于治疗颅面和其他大键缺陷,并相应地减少了社会上相关的社会经济伯恩。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bogdan Conrad其他文献
Bogdan Conrad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Novel Biofilm Paradigm Explaining Clinical Implant-Associated Illness.
解释临床植入相关疾病的新型生物膜范式。
- 批准号:
10515767 - 财政年份:2022
- 资助金额:
$ 3.63万 - 项目类别:
Novel Biofilm Paradigm Explaining Clinical Implant-Associated Illness.
解释临床植入相关疾病的新型生物膜范式。
- 批准号:
10629428 - 财政年份:2022
- 资助金额:
$ 3.63万 - 项目类别:
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
- 批准号:
10326864 - 财政年份:2021
- 资助金额:
$ 3.63万 - 项目类别:
Xanthine oxidase inhibition raises intracellular purines to activate AMPK, improve glucose control and decrease fatty liver and atherosclerosis in type 2 diabetes
黄嘌呤氧化酶抑制可提高细胞内嘌呤以激活 AMPK,改善血糖控制并减少 2 型糖尿病患者的脂肪肝和动脉粥样硬化
- 批准号:
9274280 - 财政年份:2016
- 资助金额:
$ 3.63万 - 项目类别:
Control of Stem Cell Behavior by Exposure to Tissue-Specific ECM
通过暴露于组织特异性 ECM 来控制干细胞行为
- 批准号:
9259665 - 财政年份:2016
- 资助金额:
$ 3.63万 - 项目类别: