Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
基本信息
- 批准号:10602823
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAtomic Force MicroscopyAutomationBase PairingBiological SciencesBiomedical ResearchCRISPR/Cas technologyCapitalCell LineCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsComputer softwareDNADevelopmentEffectivenessEngineeringFaceFlow CytometryGeneticGenetic DiseasesGenetic EngineeringGenetic TemplateGenomeGenomicsGeometryGoalsHealthHourHumanHuman GenomeIn VitroKnock-inLegal patentLicensingMarketingMeasuresMedicalMedical ResearchMethodsMissionModificationNanostructuresNanotechnologyNational Institute of General Medical SciencesNucleic AcidsOligonucleotidesPerformancePersonsPhasePhase III Clinical TrialsPositioning AttributeProcessProtocols documentationResearchResearch PersonnelScienceServicesShapesSingle-Stranded DNASmall Business Innovation Research GrantSoftware DesignSoftware ToolsSpecific qualifier valueSpecificityStructureSystemTechniquesTestingTherapeutic StudiesTubular formationVariantVendorWritingarmbioinformatics toolbiomaterial compatibilityclinical applicationcombinatorialcommercial applicationcommercializationdesigndesign,build,testgene therapygenetic payloadgenome editingimprovedin silicoinhibitoriterative designmanufacturemolecular modelingnanocarriernanomaterialsnanomedicinenanosensorsnoveloperationpersonalized medicinerepairedscale upself assemblysoftware developmenttherapeutic DNAtherapeutic genome editing
项目摘要
PROJECT SUMMARY
More than 300 million people worldwide are affected by a genetic health condition. Over 4,400 genetic
diseases have been identified; nearly all of which are considered rare, which limits the amount of research
each receives. Gene therapy is an attractive approach for treatment of genetic disease because of its broad
applicability. CRISPR-Cas9 genome editing systems (CRISPR) have revolutionized gene therapy research and
other fields of life science, however, no CRISPR-based treatments have reached the market and clinical
application still faces important challenges.
In this project, we aim to develop design automation software to help improve how genetic donor templates are
packaged for genomic integration via CRISPR, thereby increasing CRISPR editing efficiency. Whereas such
templates are usually delivered as unstructured (linear) single-stranded DNA, recent studies indicate genome
integration efficiency is significantly improved when templates are folded into compact shapes using
techniques from DNA nanotechnology. Such nanostructured genetic payloads (NGPs) for CRISPR have the
potential to become an essential component of genetic therapy and personalized medicine. The long-term goal
of the project is to provide researchers with software for designing more effective CRISPR treatments to
improve the lives of people with genetic health problems. Our solution will also advance other application
domains where DNA nanotechnology is being employed, such as nanomedicine, nanosensing and
biocompatible nanomaterials, thereby supporting the mission of the National Institute of General Medical
Sciences (NIGMS): improving the effectiveness of computational approaches in biomedical research.
Academic software exists to facilitate design of DNA nanostructures, however, these applications either require
extensive expertise or are limited to 3D wireframe designs. Design of a novel DNA nanostructure of modest
complexity that is not among a small set of simple designs can require hundreds of hours of expert labor.
Moreover, because NGPs are new to science, no software currently exists to automatically generate DNA
nanostructures for a given set of NGP design parameters. In Aim 1 of this project, we will employ an iterative
design-build-test development cycle we have used to bring other software products to market to develop novel
parametric design software (PDS) able to create NGPs automatically for a given genetic template and set of
design parameters. In Aim 2, we will simulate and synthesize eight NGPs and characterize them via molecular
modeling and atomic force microscopy to confirm they meet design specifications. We will then test these
NGPs for CRISPR editing efficiency against unstructured payload controls in vitro. In Phase II, we will enhance
the PDS and use it to explore the vast space of NGP designs for those that optimize CRISPR performance via
combinatorial testing across multiple cell lines, templates and insertion targets. Ultimately, we aim to
commercialize NGP software and design services to accelerate CRISPR research.
项目概要
全球有超过 3 亿人受到遗传健康状况的影响。超过 4,400 个基因
已查明疾病;几乎所有这些都被认为是罕见的,这限制了研究量
每个收到。基因疗法因其广泛的用途而成为治疗遗传病的一种有吸引力的方法
适用性。 CRISPR-Cas9 基因组编辑系统 (CRISPR) 彻底改变了基因治疗研究和
然而,在生命科学的其他领域,基于 CRISPR 的治疗方法尚未进入市场和临床
应用仍面临重要挑战。
在这个项目中,我们的目标是开发设计自动化软件,以帮助改进遗传供体模板的设计
包装后可通过 CRISPR 进行基因组整合,从而提高 CRISPR 编辑效率。鉴于这样的
模板通常以非结构化(线性)单链 DNA 形式提供,最近的研究表明基因组
当使用模板将模板折叠成紧凑的形状时,集成效率显着提高
DNA纳米技术的技术。这种用于 CRISPR 的纳米结构遗传有效负载 (NGP) 具有
有潜力成为基因治疗和个性化医疗的重要组成部分。长期目标
该项目的目的是为研究人员提供用于设计更有效的 CRISPR 治疗的软件
改善患有遗传健康问题的人们的生活。我们的解决方案还将推进其他应用
DNA纳米技术正在应用的领域,例如纳米医学、纳米传感和
生物相容性纳米材料,从而支持国家普通医学研究所的使命
科学(NIGMS):提高生物医学研究中计算方法的有效性。
学术软件的存在是为了促进 DNA 纳米结构的设计,但是,这些应用要么需要
广泛的专业知识或仅限于 3D 线框设计。一种新型 DNA 纳米结构的设计
不属于一小部分简单设计的复杂性可能需要数百个小时的专家劳动。
此外,由于 NGP 对科学来说是新事物,目前不存在自动生成 DNA 的软件
给定一组 NGP 设计参数的纳米结构。在该项目的目标 1 中,我们将采用迭代
我们使用设计-构建-测试开发周期将其他软件产品推向市场以开发新颖的软件产品
参数化设计软件 (PDS) 能够为给定的遗传模板和一组自动创建 NGP
设计参数。在目标 2 中,我们将模拟并合成 8 个 NGP,并通过分子表征它们
建模和原子力显微镜,以确认它们符合设计规范。然后我们将测试这些
NGP 在体外针对非结构化有效负载对照提高 CRISPR 编辑效率。在第二阶段,我们将加强
PDS 并用它来探索 NGP 设计的广阔空间,通过以下方式优化 CRISPR 性能
跨多个细胞系、模板和插入目标的组合测试。最终,我们的目标是
将 NGP 软件和设计服务商业化,以加速 CRISPR 研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven L Armentrout其他文献
Steven L Armentrout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven L Armentrout', 18)}}的其他基金
A nanoengineering platform for programmable gene editing therapies against rare diseases
用于针对罕见疾病的可编程基因编辑疗法的纳米工程平台
- 批准号:
10699037 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A nanoengineering platform for programmable gene editing therapies against rare diseases
用于针对罕见疾病的可编程基因编辑疗法的纳米工程平台
- 批准号:
10699037 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A multitargeted nanocarrier inhibitor of undruggable transcription factors for treating castration resistant prostate cancer
用于治疗去势抵抗性前列腺癌的不可成药转录因子的多靶点纳米载体抑制剂
- 批准号:
10252316 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
A multitargeted nanocarrier inhibitor of undruggable transcription factors for treating castration resistant prostate cancer
用于治疗去势抵抗性前列腺癌的不可成药转录因子的多靶点纳米载体抑制剂
- 批准号:
10415002 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Smartphone phenotype collection for diagnostic screening of mild cognitive impairment
智能手机表型收集用于轻度认知障碍的诊断筛查
- 批准号:
10255750 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Smartphone phenotype collection for diagnostic screening of mild cognitive impairment
智能手机表型收集用于轻度认知障碍的诊断筛查
- 批准号:
10478979 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Mixed-Ligand Targeting of a Nano-Pharmaceutical Against GBM Stem Cells
纳米药物的混合配体靶向 GBM 干细胞
- 批准号:
8201250 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Mixed-Ligand Targeting of a Nano-Pharmaceutical Against GBM Stem Cells
纳米药物的混合配体靶向 GBM 干细胞
- 批准号:
8518927 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
食欲素2型受体通过影响BACE2功能增加脑内Aβ产生加速阿尔茨海默病发生发展的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
PRAS40通过促进G6PI/PGK1/LDHA复合物的组装加速糖酵解进程对结直肠癌发生的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流相互作用区对太阳高能粒子加速和传输过程的影响
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
下游边界对磁重联出流区电子加速的影响
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Primary cell culture models of HIV/HBV co-infection
HIV/HBV合并感染的原代细胞培养模型
- 批准号:
10762093 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: