A nanoengineering platform for programmable gene editing therapies against rare diseases
用于针对罕见疾病的可编程基因编辑疗法的纳米工程平台
基本信息
- 批准号:10699037
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsBiological SciencesBone MarrowCRISPR/Cas technologyCapitalCarrying CapacitiesCell LineCellsChargeClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexComputer-Aided DesignConfocal MicroscopyDNADiseaseDoseEffectivenessElectroporationElementsEncapsulatedEndosomesEndothelial CellsEngineeringFDA approvedFaceFlow CytometryGene DeliveryGene ExpressionGene TransferGenesGeneticGenetic DiseasesGenomeGenomicsGoalsHealthHeritabilityHuman Cell LineImmune responseInflammatoryInsertional MutagenesisJurkat CellsKnock-inLabelMachine LearningMarketingMedicalMedical TechnologyMethodsMolecularNanostructuresNanotechnologyNuclearNucleic AcidsOutcomePatientsPeptidesPersonsPhasePolymersProductionRare DiseasesReporterReportingResearchResearch PersonnelSafetyServicesShapesSiteSmall Business Innovation Research GrantSoftware DesignSpecificityStructureSurfaceSystemTestingTherapeutic StudiesTransgenesVendorViral VectorVirusVirus-like particlebase editingcapsuleclinical translationcommercial applicationcommercializationdelivery vehicledesignfallsfluorophoregene therapygenome editinghuman stem cellsimprovedin vivolipid nanoparticlemanufacturing costnanocarriernanoengineeringnanofabricationnon-viral gene deliverynon-viral gene therapynoveloperationparticleprime editingrare genetic disorderrepairedscale uptherapeutic genome editingvector
项目摘要
PROJECT SUMMARY
More than 300 million people worldwide are affected by a genetic health condition. Over 4,400 genetic
diseases have been identified; nearly all of which are considered rare, which limits the amount of research
each receives. Gene therapy is an attractive approach for treatment of genetic disease because of its
versatility and broad applicability. Genome editing systems such as CRISPR-Cas9, base editing and prime
editing have revolutionized gene therapy research and other fields of life science, however, few gene editing
treatments have reached the market and clinical translation still faces important challenges. Among them is the
need for safe and effective gene therapy delivery vehicles and platforms for their creation.
In this project, we will design and test a new class of programmable, non-viral gene therapy carriers and cargo
– virus-inspired DNA origami (VIDO) vectors and repair templates – and Essemblix GT, a nanoengineering
platform tailored for their production. In contrast to other gene therapy delivery vehicles, VIDO products are
modular and easily modified for different diseases. Moreover, they are structurally well-defined with little
intermolecular variability, facilitating regulatory approval and clinical translation. To our knowledge, this will be
the first project to investigate the use of DNA origami for encapsulation and delivery of gene editing agents.
In Aim 1, we will demonstrate that CRISPR-Cas9 knock-in efficiency is improved by folding and compacting
homology-directed repair (HDR) templates with DNA origami methods. VIDO-folded reporter templates will be
compared against unstructured controls when delivered via electroporation to HEK293T and Jurkat human cell
lines at two different genome insertion sites. Nuclear entry will be determined by confocal microscopy of
fluorophore-labeled template and knock-in efficiency will be assessed by flow cytometry.
In Aim 2, using the same cell lines and genomic targets, we will demonstrate VIDO vectors can encapsulate
and co-deliver CRISPR-Cas9 editing agents and VIDO templates, are readily taken up by cells and induce
knock-in efficiency that is competitive with delivery of the same agents via virus-like particles (VLP).
Endosomal escape and gene expression will be tracked via confocal microscopy and flow cytometry. In both
aims, correct genomic integration will be confirmed via Illumina sequencing.
Successful completion of these aims will establish VIDO vectors and templates as new, programmable gene
therapy products with key advantages over existing alternatives. By making it practical to rapidly design and
create such VIDO products, the Essemblix GT nanoengineering platform could shift gene therapy research
toward a paradigm of gene therapy engineering, thus enabling researchers to deliver more treatments for rare
diseases to more patients more quickly.
项目概要
全球有超过 3 亿人受到遗传健康状况的影响 超过 4,400 种遗传病。
已发现的疾病几乎全部被认为是罕见的,这限制了研究的数量
基因疗法因其独特的优势而成为治疗遗传病的一种有吸引力的方法。
多功能性和广泛的适用性,例如 CRISPR-Cas9、碱基编辑和 prime
编辑已经彻底改变了基因治疗研究和生命科学的其他领域,然而,很少有基因编辑
治疗方法已进入市场,临床转化仍面临重要挑战。
需要安全有效的基因治疗递送工具及其创建平台。
在这个项目中,我们将设计和测试一类新型可编程、非病毒基因治疗载体和货物
– 受病毒启发的 DNA 折纸 (VIDO) 载体和修复模板 – 以及 Essemblix GT,一种纳米工程
与其他基因治疗递送工具相比,VIDO 产品是为其生产量身定制的平台。
模块化且易于修改以适应不同的疾病,而且它们结构明确,几乎没有什么问题。
据我们所知,这将有助于促进监管批准和临床转化。
第一个研究使用 DNA 折纸封装和递送基因编辑剂的项目。
在目标 1 中,我们将证明通过折叠和压缩提高 CRISPR-Cas9 敲入效率
采用 DNA 折纸方法的同源定向修复 (HDR) 模板将是 VIDO 折叠报告模板。
通过电穿孔递送至 HEK293T 和 Jurkat 人类细胞时与非结构化对照进行比较
两个不同基因组插入位点的细胞系将通过共聚焦显微镜确定。
荧光团标记的模板和敲入效率将通过流式细胞术评估。
在目标 2 中,使用相同的细胞系和基因组靶标,我们将证明 VIDO 载体可以封装
并共同传递 CRISPR-Cas9 编辑剂和 VIDO 模板,很容易被细胞吸收并诱导
敲入效率可与通过病毒样颗粒 (VLP) 递送相同药物相媲美。
内体逃逸和基因表达将通过共聚焦显微镜和流式细胞术进行追踪。
目的是通过 Illumina 测序确认正确的基因组整合。
成功完成这些目标将建立 VIDO 载体和模板作为新的可编程基因
与现有替代品相比,治疗产品具有关键优势,使其易于快速设计和使用。
通过创建此类 VIDO 产品,Essemblix GT 纳米工程平台可以改变基因治疗研究
迈向基因治疗工程范例,从而使研究人员能够为罕见病提供更多治疗方法
疾病更快地传播给更多患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven L Armentrout其他文献
Steven L Armentrout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven L Armentrout', 18)}}的其他基金
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
- 批准号:
10602823 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
A multitargeted nanocarrier inhibitor of undruggable transcription factors for treating castration resistant prostate cancer
用于治疗去势抵抗性前列腺癌的不可成药转录因子的多靶点纳米载体抑制剂
- 批准号:
10252316 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
A multitargeted nanocarrier inhibitor of undruggable transcription factors for treating castration resistant prostate cancer
用于治疗去势抵抗性前列腺癌的不可成药转录因子的多靶点纳米载体抑制剂
- 批准号:
10415002 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
Smartphone phenotype collection for diagnostic screening of mild cognitive impairment
智能手机表型收集用于轻度认知障碍的诊断筛查
- 批准号:
10255750 - 财政年份:2018
- 资助金额:
$ 32.5万 - 项目类别:
Smartphone phenotype collection for diagnostic screening of mild cognitive impairment
智能手机表型收集用于轻度认知障碍的诊断筛查
- 批准号:
10478979 - 财政年份:2018
- 资助金额:
$ 32.5万 - 项目类别:
Mixed-Ligand Targeting of a Nano-Pharmaceutical Against GBM Stem Cells
纳米药物的混合配体靶向 GBM 干细胞
- 批准号:
8201250 - 财政年份:2011
- 资助金额:
$ 32.5万 - 项目类别:
Mixed-Ligand Targeting of a Nano-Pharmaceutical Against GBM Stem Cells
纳米药物的混合配体靶向 GBM 干细胞
- 批准号:
8518927 - 财政年份:2011
- 资助金额:
$ 32.5万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Assessing Racial Bias in Pulmonary Medicine from the Interpretation of Pulmonary Function Tests
从肺功能测试的解释评估肺医学的种族偏见
- 批准号:
10677310 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
CRSNS: Development of EEG/MEG Source Reconstruction with Fast Multipole Method
CRSNS:使用快速多极方法进行 EEG/MEG 源重建的开发
- 批准号:
10835137 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Secondary Analysis and Integration of Existing Data Related to Chronic Orofacial Pain and Placebo Effects - Administrative Supplement
与慢性口面部疼痛和安慰剂效应相关的现有数据的二次分析和整合 - 行政补充
- 批准号:
10741330 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别: