Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
基本信息
- 批准号:10585301
- 负责人:
- 金额:$ 57.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvant ChemotherapyAdoptedAftercareAgeAlgorithmsArchitectureBiologicalBloodCancer EtiologyChemotherapy-Oncologic ProcedureClinicalClinical DataClinical MarkersClinical TrialsCurative SurgeryDataDevelopmentDiseaseDisease SurveillanceDistantEvaluationFailureGenderGoalsHabitatsHeterogeneityHistologicHistologyImageImaging technologyImmuneImmunotherapyIncidenceIndividualIntegration Host FactorsKnowledgeLocalized DiseaseLocationMachine LearningMalignant NeoplasmsMinority GroupsModalityModelingMonitorMorphologyNeoadjuvant TherapyOperative Surgical ProceduresPET/CT scanPathologicPatient-Focused OutcomesPatientsPerformancePopulationPrediction of Response to TherapyProcessPrognosisProtocols documentationPublic HealthRecurrenceReproducibilityResearchRiskRisk FactorsSelection for TreatmentsSerum MarkersSolid NeoplasmStagingStatistical ModelsSystemic diseaseTestingToxic effectTrainingUncertaintyUnderserved PopulationValidationWorkX-Ray Computed Tomographyadvanced diseaseburden of illnesscancer therapychemotherapyclinical translationclinically relevantclinically significantcohortcommunity settingdeep learningdeep learning modeldesigneffective therapyfollow-upimaging approachimaging biomarkerimprovedimproved outcomeindividual patientineffective therapiesinnovationknowledge baselearning strategylongitudinal analysismalignant stomach neoplasmminority communitiesmortalitymultimodal datamultitasknew therapeutic targetnovelperformance testspersonalized medicinepredicting responsepredictive modelingprognosticprognostic modelprognostic valueprospectiveprospective testradiological imagingradiomicsresponserisk predictionrisk stratificationserial imagingside effectstandard caresuccesssurvival outcomesurvival predictiontherapy outcometranslational modeltreatment responsetumortumor microenvironment
项目摘要
ABSTRACT
Gastric cancer is a major global disease burden and leading cause of cancer mortality worldwide.
Current treatment decision is made primarily on the basis of staging, which divides patients into
several prognostic groups. For patients with localized and locally advanced disease, curative-intent
surgery with chemotherapy is the standard treatment. However, survival outcomes vary widely, even
among patients with disease of the same stage. Certain patients with early-stage disease have a
sufficiently low risk of recurrence and may not benefit from, or could even be harmed by,
chemotherapy given the associated toxicity and side effects. Conversely, many patients with
aggressive tumors do not respond well to standard chemotherapy and still recur despite receiving
extensive but ineffective treatment. Therefore, current one-size-fits-all approach is suboptimal,
leading to over- and under-treatment in many patients. There is an unmet need for reliable prognostic
and predictive models to guide personalized treatment of gastric cancer. To address this unmet need,
we propose robust radiomics features of tumor morphology and spatial heterogeneity and establish
their prognostic value. In addition, we will incorporate pathobiological knowledge into the design of
deep learning models for predicting prognosis. Further, we will develop novel deep learning
architecture to analyze longitudinal images for predicting pathologic response to neoadjuvant therapy.
Finally, by leveraging the complementary value of imaging data, clinicopathologic variables and serial
serum markers, we will construct integrative models to further improve prediction. If successful, the
proposed models will be useful in two ways: (1), identify which patients with early gastric cancer may
safely forego chemotherapy and avoid toxicity; (2), select the most effective chemotherapy regimen
for a given patient. Further, the models can also identify patients with advanced disease who do not
respond to standard chemotherapy and may benefit from novel targeted therapy or immunotherapy.
The proposed computational imaging approaches are generally applicable for response monitoring
and disease surveillance in many solid tumor types. Finally, the AI-based imaging technology
developed here can bring benefit to underserved populations in minority groups and community
settings. Progress made in gastric cancer will not only improve outcomes for patients in the US but
also have global impact given its high incidence and mortality worldwide.
抽象的
胃癌是全球主要疾病负担,也是全球癌症死亡的主要原因。
目前的治疗决策主要根据分期做出,将患者分为
几个预后组。对于患有局部和局部晚期疾病的患者,以治疗为目的
手术联合化疗是标准治疗方法。然而,生存结果差异很大,甚至
处于同一阶段疾病的患者之间。某些患有早期疾病的患者有
复发风险足够低,可能不会受益,甚至可能受到伤害,
化疗具有相关的毒性和副作用。相反,许多患者
侵袭性肿瘤对标准化疗反应不佳,尽管接受了化疗,但仍会复发
广泛但无效的治疗。因此,当前的一刀切方法并不是最理想的,
导致许多患者治疗过度或治疗不足。对可靠预后的需求尚未得到满足
和预测模型来指导胃癌的个性化治疗。为了解决这一未满足的需求,
我们提出了肿瘤形态和空间异质性的稳健放射组学特征,并建立了
他们的预后价值。此外,我们会将病理生物学知识融入到设计中
用于预测预后的深度学习模型。此外,我们将开发新颖的深度学习
分析纵向图像以预测新辅助治疗的病理反应的架构。
最后,通过利用影像数据、临床病理变量和序列的互补价值
血清标志物,我们将构建综合模型以进一步改进预测。如果成功的话,
所提出的模型将在两个方面发挥作用:(1)确定哪些早期胃癌患者可能
安全地放弃化疗并避免毒性; (2)、选择最有效的化疗方案
对于给定的患者。此外,这些模型还可以识别患有晚期疾病的患者,这些患者不
对标准化疗有反应,并可能受益于新型靶向治疗或免疫治疗。
所提出的计算成像方法通常适用于反应监测
以及许多实体瘤类型的疾病监测。最后,基于AI的成像技术
这里的开发可以为少数群体和社区中服务不足的人群带来好处
设置。胃癌方面取得的进展不仅会改善美国患者的预后,
鉴于其在世界范围内的高发病率和死亡率,也具有全球影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruijiang Li其他文献
Ruijiang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruijiang Li', 18)}}的其他基金
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10594058 - 财政年份:2018
- 资助金额:
$ 57.77万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10332716 - 财政年份:2018
- 资助金额:
$ 57.77万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10594058 - 财政年份:2018
- 资助金额:
$ 57.77万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9026075 - 财政年份:2016
- 资助金额:
$ 57.77万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9197624 - 财政年份:2016
- 资助金额:
$ 57.77万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8521207 - 财政年份:2012
- 资助金额:
$ 57.77万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8921946 - 财政年份:2012
- 资助金额:
$ 57.77万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8279092 - 财政年份:2012
- 资助金额:
$ 57.77万 - 项目类别:
相似国自然基金
LncRNA LINC01614通过tRNA m7G甲基化修饰调控CAFs自噬进而促进ESCC代谢重塑及新辅助化疗耐药的机制研究
- 批准号:82303901
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHLDA3通过ALDH1A1调控非小细胞肺癌干性促进新辅助化疗耐药的作用和机制研究
- 批准号:82302950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CHAF1B通过调控组蛋白甲基化修饰促进口腔鳞癌新辅助化疗固有耐药的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
锌指转录因子ZFP82通过HDAC3调控p53蛋白稳定性增敏食管癌新辅助化疗的作用和机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
MEIS2通过NF-κB/UXT/p65复合体调节H2AFJ转录参与直肠癌放化疗抵抗的作用和机制研究
- 批准号:81902378
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 57.77万 - 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 57.77万 - 项目类别:
Optimization of urinary DNA deep sequencing tests to enhance clinical staging of bladder cancer patients
优化尿液 DNA 深度测序测试以提高膀胱癌患者的临床分期
- 批准号:
10675644 - 财政年份:2021
- 资助金额:
$ 57.77万 - 项目类别:
Breast Cancer Intravoxel-incoherent-motion MRI Multisite (BRIMM) Study - Resubmission - 1
乳腺癌体素内不相干运动 MRI 多部位 (BRIMM) 研究 - 重新提交 - 1
- 批准号:
10927483 - 财政年份:2021
- 资助金额:
$ 57.77万 - 项目类别:
Breast Cancer Intravoxel-incoherent-motion MRI Multisite (BRIMM) Study - Resubmission - 1
乳腺癌体素内不相干运动 MRI 多部位 (BRIMM) 研究 - 重新提交 - 1
- 批准号:
10927483 - 财政年份:2021
- 资助金额:
$ 57.77万 - 项目类别: