Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
基本信息
- 批准号:8921946
- 负责人:
- 金额:$ 24.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-02 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAffectAlgorithmsAnatomyAwardBreathingCancer PatientClinicalDataData SetDoseFutureGoalsGroupingImageImaging DeviceImaging TechniquesInterventionKnowledgeLeadLiftingLinear Accelerator Radiotherapy SystemsLiverLungLung NeoplasmsMalignant neoplasm of lungMedicalMentorsMethodologyMethodsModelingMorphologic artifactsMotionNatureNormal tissue morphologyOutcome StudyPancreasPathologyPatientsPerformancePhasePositioning AttributeProcessQuality of lifeRadiationRadiation therapyResearchResearch PersonnelResearch Project GrantsResearch TrainingRespirationRotationSafetySeriesSiteStatistical ModelsTechniquesTherapeuticTimeToxic effectTrainingUniversitiesWorkX-Ray Computed Tomographybasecancer radiation therapycareercareer developmentclinically significantdigitalflexibilityimage guidedimage reconstructionimaging modalityimaging systemimprovedinnovationlung volumemedical schoolsmeetingsparallel computerprogramsreconstructionresearch and developmentrespiratorysignal processingsimulationtime usetooltreatment durationtumor
项目摘要
Interfraction anatomic changes and intrafraction respiratory motion are the major limiting factors for escalating
radiation dose and improving local control in lung cancer radiotherapy. The advent of on-board x-ray imaging
device mounted on the medical linear accelerator (LINAC) has provided a tool to obtain valuable anatomic
information of the patient in the treatment position. However, due to the slow rotating nature of the on-board
imaging system (~1 min per rotation), obtaining volumetric information in real time is extremely challenging.
Existing methods have relied on grouping many projections acquired over multiple breathing cycles for several
minutes to reconstruct one static anatomy. Further, due to the fact that lung cancer patients tend to breathe
irregularly, the reconstructed images are often heavily contaminated by breathing motion artifacts. The goal of
this research project is to develop innovative real-time volumetric imaging methods that are able to reconstruct
the dynamic patient anatomy in real time (~0.1 s) using a single x-ray projection during dose delivery. This bold
goal is made practical by three integral components: effective use of an accurate patient-specific lung motion
model, advanced compressed sensing techniques for image reconstruction, and a massively parallel and yet
affordable computing platform based on graphics processing units (GPU). During the mentored K99 phase, the
candidate will draw on his signal processing and statistical modeling expertise to improve and optimize the
patient-specific lung motion model while gaining knowledge in lung patient anatomy and pathology, and to
quantitatively evaluate the lung motion model and interpret the clinical significance of the results. During the
independent R00 phase, a real-time volumetric imaging method which captures both interfraction anatomical
changes and intrafraction breathing motion, will be developed, implemented, and evaluated through systematic
phantom and patient studies. Successful completion of this project will overcome a critical barrier to the
urgently needed real-time volumetric image guidance in lung cancer radiotherapy and afford a powerful way for
us to safely escalate the radiation dose and improve local control of lung cancer. This project fits perfectly with
the candidate’s long-term career goal of establishing a high-quality independent research program to develop
state-of-the-art x-ray imaging techniques, which will provide real-time image guidance for cancer radiotherapy
and ultimately improve the therapeutic ratio and enhance the quality of life for cancer patients. Career
development and research training will be an integral component during the mentored phase of this project.
This training will be further supplemented with formal coursework at Stanford University School of Medicine, as
well as participation in research seminars and scientific meetings. The training and research contributions
supported by this K99/R00 award will substantially enhance the candidate’s career and serve to establish him
as a successful independent investigator in the near future.
分次间解剖变化和分次内呼吸运动是升级的主要限制因素
放射剂量和改善肺癌放射治疗的局部控制。机载 X 射线成像的出现。
安装在医用直线加速器 (LINAC) 上的设备提供了一种获得有价值的解剖学信息的工具
然而,由于机载设备旋转速度慢,因此无法获取处于治疗位置的患者的信息。
成像系统(每次旋转约 1 分钟),实时获取体积信息极具挑战性。
现有方法依赖于对多个呼吸周期中获得的许多预测进行分组
此外,由于肺癌患者倾向于呼吸,因此需要几分钟的时间来重建一个静态解剖结构。
不规则的是,重建的图像常常受到呼吸运动伪影的严重污染。
该研究项目旨在开发创新的实时体积成像方法,能够重建
在剂量输送期间使用单个 X 射线投影实时(~0.1 秒)动态患者解剖结构。
该目标通过三个组成部分得以实现: 有效利用准确的患者特定肺运动
模型、用于图像重建的先进压缩感知技术以及大规模并行且尚未实现的
基于图形处理单元 (GPU) 的经济型计算平台 在 K99 指导阶段,
候选人将利用他的信号处理和统计建模专业知识来改进和优化
患者特定的肺运动模型,同时获得有关肺患者解剖学和病理学的知识,并
定量评估肺运动模型并解释结果的临床意义。
独立的 R00 相位,一种实时体积成像方法,可捕获交叉解剖结构
变化和分次内呼吸运动,将通过系统性的开发、实施和评估
模型和患者研究的成功完成将克服一个关键障碍。
肺癌放射治疗中迫切需要的实时体积图像引导,并为
我们安全地增加辐射剂量并改善肺癌的局部控制。
候选人的长期职业目标是建立高质量的独立研究项目来开发
最先进的 X 射线成像技术,将为癌症放射治疗提供实时图像指导
最终提高癌症患者的治疗率并提高生活质量。
开发和研究培训将是该项目指导阶段不可或缺的组成部分。
该培训将得到斯坦福大学医学院的正式课程的进一步补充,如
以及参加研究研讨会和科学会议的培训和研究贡献。
获得 K99/R00 奖项的支持将极大地提升候选人的职业生涯并有助于奠定他的地位
在不久的将来成为一名成功的独立调查员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruijiang Li其他文献
Ruijiang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruijiang Li', 18)}}的其他基金
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10594058 - 财政年份:2018
- 资助金额:
$ 24.22万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10332716 - 财政年份:2018
- 资助金额:
$ 24.22万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10594058 - 财政年份:2018
- 资助金额:
$ 24.22万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9026075 - 财政年份:2016
- 资助金额:
$ 24.22万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9197624 - 财政年份:2016
- 资助金额:
$ 24.22万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8521207 - 财政年份:2012
- 资助金额:
$ 24.22万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8279092 - 财政年份:2012
- 资助金额:
$ 24.22万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multi-level interventions for addressing tobacco cessation and SDOH in Community Health Centers (CHCs)
解决社区卫生中心 (CHC) 戒烟和 SDOH 问题的多层次干预措施
- 批准号:
10661440 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Spatially Resolved CRISPR Genomics for Dissecting Testicular Gene Functions at Scale
空间分辨 CRISPR 基因组学用于大规模剖析睾丸基因功能
- 批准号:
10573701 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
- 批准号:
10717177 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别: