Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
基本信息
- 批准号:10594058
- 负责人:
- 金额:$ 43.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Adjuvant TherapyAnatomyBiologicalBiological AssayBiological MarkersBreastBreast Cancer PatientBreast Cancer Risk FactorCancer EtiologyCharacteristicsClinicalClinical MarkersClinical TrialsComplementDataDiagnosisDiagnosticDiseaseEvaluationExhibitsFailureFunctional disorderGene ExpressionGene Expression ProfileGenesGenomicsGoalsImageImage Guided BiopsyIndividualIndolentInstitutionInvadedMRI ScansMagnetic Resonance ImagingMethodsModelingMolecularMorbidity - disease rateMorphologyOutcomePathologicPathway interactionsPatientsPhenotypePhysiologicalPhysiologyPrognosisPrognostic FactorPrognostic MarkerProtocols documentationRadiogenomicsRandomizedRecurrenceRecurrent Malignant NeoplasmRegression AnalysisReproducibilityResearchRetrospective cohortRiskRoleStagingTechniquesTestingTextureThe Cancer Genome AtlasThe Cancer Imaging ArchiveTissuesUncertaintyUnited StatesValidationVariantWomanbreast cancer progressionburden of illnesscancer recurrencecancer survivalcancer typechemotherapyclinical translationcohortcontrast enhancedgenomic biomarkerhigh riskimaging biomarkerimprovedindividualized medicineinterestmalignant breast neoplasmmolecular phenotypemortalityneglectoncotypeovertreatmentpatient stratificationprecision oncologyprognosticprognostic signatureprognostic valueprognosticationprospectivequantitative imagingrisk minimizationrisk stratificationtreatment responsetumortumor heterogeneity
项目摘要
ABSTRACT
The goal of this research is to develop and validate prognostic imaging biomarkers for breast cancer.
A major challenge in the management of breast cancer is distinguishing patients with indolent disease
from those with aggressive lethal disease at diagnosis. Currently, there are no reliable biomarkers to
distinguish these groups on an individual level. Consequently, all patients with breast cancer receive
adjuvant therapies, but not all benefit equally. This one-size-fits-all approach causes overtreatment,
leading to morbidity and mortality. The need for reliable biomarkers is highlighted by the randomized
TAILORx trial, which identified a small group of low-risk breast cancer patients who had very low
rates of recurrence without chemotherapy, based on the 21-gene Oncotype Dx assay. Unfortunately,
a majority (67%) of patients fell in the intermediate-risk range according to the genomic assay, and
uncertainty still remains regarding the need for chemotherapy among these patients. Clearly, better
biomarkers are needed to improve prognostication and patient stratification in breast cancer. Built on
extensive preliminary data, we hypothesize that imaging characteristics reflect underlying tumor
pathophysiology, and that image-based phenotyping of both tumor and parenchyma will provide
much improved accuracy for recurrence prediction. To test this hypothesis, we propose to: (1)
develop and improve methods to explicitly quantify multiregional MRI phenotypes including those of
intratumoral subregion and parenchyma, and systematically assess their reproducibility; (2) develop a
prognostic imaging signature using a large retrospective cohort of >1000 patients curated by the
Stanford Oncoshare Project, and validate it in the prospective multi-center I-SPY 1 cohort; (3)
construct a radiogenomic signature to perform additional testing of its prognostic value in 13 public
gene expression cohorts of >5000 breast cancer patients. To further improve prognostication, we will
build a multifactorial model that integrates imaging with clinical and genomic markers. This research
will advance the quantitative imaging field by moving beyond traditional gross-tumor features and
incorporating additional parenchymal and intratumoral imaging characteristics. If successful, it will
provide much needed, rigorously validated imaging biomarkers for breast cancer, which can be
further tested for clinical utility in prospective trials. Ultimately, such biomarkers can be used to stratify
patients and guide individualized therapy, by allowing clinicians to avoid overtreatment of indolent
disease and intensify treatment in women with aggressive disease.
抽象的
这项研究的目标是开发和验证乳腺癌的预后成像生物标志物。
乳腺癌治疗的一个主要挑战是区分惰性疾病患者
来自那些在诊断时患有侵袭性致命疾病的人。目前尚无可靠的生物标志物
在个人层面上区分这些群体。因此,所有乳腺癌患者都接受
辅助疗法,但并非所有疗法都同样受益。这种一刀切的方法会导致过度治疗,
导致发病率和死亡率。随机研究强调了对可靠生物标志物的需求
TAILORx 试验,该试验确定了一小群低风险乳腺癌患者,这些患者的乳腺癌风险非常低
基于 21 基因 Oncotype Dx 检测的不化疗复发率。很遗憾,
根据基因组检测,大多数(67%)患者属于中等风险范围,并且
这些患者是否需要化疗仍存在不确定性。显然,更好
需要生物标志物来改善乳腺癌的预后和患者分层。建立在
广泛的初步数据,我们假设成像特征反映了潜在的肿瘤
病理生理学,以及肿瘤和实质的基于图像的表型分析将提供
大大提高了复发预测的准确性。为了检验这个假设,我们建议:(1)
开发和改进方法来明确量化多区域 MRI 表型,包括
瘤内分区和实质,并系统评估其再现性; (2) 开发一个
使用由超过 1000 名患者组成的大型回顾性队列进行预后成像特征
斯坦福 Oncoshare 项目,并在前瞻性多中心 I-SPY 1 队列中进行验证; (3)
构建放射基因组特征,以在 13 名公众中对其预后价值进行额外测试
> 5000 名乳腺癌患者的基因表达队列。为了进一步改善预测,我们将
建立一个将成像与临床和基因组标记相结合的多因素模型。这项研究
将超越传统的大体肿瘤特征,推动定量成像领域的发展
结合额外的实质和肿瘤内成像特征。如果成功的话将会
为乳腺癌提供急需的、经过严格验证的成像生物标志物,
在前瞻性试验中进一步测试了临床实用性。最终,此类生物标志物可用于分层
患者并指导个体化治疗,使临床医生避免对惰性患者的过度治疗
疾病并加强对患有侵袭性疾病的女性的治疗。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study.
通过多任务深度学习从胃癌 CT 图像预测腹膜复发和无病生存:一项回顾性研究。
- DOI:10.1016/s2589-7500(22)00040-1
- 发表时间:2022-05-01
- 期刊:
- 影响因子:0
- 作者:Yuming Jiang;Zhicheng Zhang;Q. Yuan;W. Wang;Hongyu Wang;Tuan;Weicai Huang;Jingjing Xie
- 通讯作者:Jingjing Xie
B cell-related gene signature and cancer immunotherapy response.
B 细胞相关基因特征和癌症免疫治疗反应。
- DOI:
- 发表时间:2022-04
- 期刊:
- 影响因子:8.8
- 作者:Lundberg, Arian;Li, Bailiang;Li, Ruijiang
- 通讯作者:Li, Ruijiang
The Immune Subtypes and Landscape of Squamous Cell Carcinoma.
鳞状细胞癌的免疫亚型和景观。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Li, Bailiang;Cui, Yi;Nambiar, Dhanya K;Sunwoo, John B;Li, Ruijiang
- 通讯作者:Li, Ruijiang
Radiomics and radiogenomics for precision radiotherapy.
用于精准放射治疗的放射组学和放射基因组学。
- DOI:
- 发表时间:2018-03-01
- 期刊:
- 影响因子:2
- 作者:Wu, Jia;Tha, Khin Khin;Xing, Lei;Li, Ruijiang
- 通讯作者:Li, Ruijiang
Integrating Radiosensitivity and Immune Gene Signatures for Predicting Benefit of Radiotherapy in Breast Cancer.
整合放射敏感性和免疫基因特征来预测乳腺癌放射治疗的益处。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Cui, Yi;Li, Bailiang;Pollom, Erqi L;Horst, Kathleen C;Li, Ruijiang
- 通讯作者:Li, Ruijiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruijiang Li其他文献
Ruijiang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruijiang Li', 18)}}的其他基金
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10332716 - 财政年份:2018
- 资助金额:
$ 43.8万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9026075 - 财政年份:2016
- 资助金额:
$ 43.8万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9197624 - 财政年份:2016
- 资助金额:
$ 43.8万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8521207 - 财政年份:2012
- 资助金额:
$ 43.8万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8921946 - 财政年份:2012
- 资助金额:
$ 43.8万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8279092 - 财政年份:2012
- 资助金额:
$ 43.8万 - 项目类别:
相似国自然基金
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
澄江生物群奇虾类的解剖学和定量形态演化研究
- 批准号:41902014
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于声带纵向运动定量检测的喉框架成形手术的临床应用和影像解剖学研究
- 批准号:81700898
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
国人解剖型多孔镁合金腰椎融合器的生物学特性及生物力学研究
- 批准号:81772388
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
寰枢椎融合器内固定一体化的解剖学和生物力学研究
- 批准号:81672178
- 批准年份:2016
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
Targeting metabolic dependencies in ZFTA-RELA fusion childhood ependymomas
针对 ZFTA-RELA 融合儿童室管膜瘤的代谢依赖性
- 批准号:
10655158 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
- 批准号:
10655918 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
A Patient-Centric Approach to Advance Functional Precision Oncology
以患者为中心的方法推进功能性精准肿瘤学
- 批准号:
10721205 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Label-free digital cytopathology using deep-ultraviolet coded ptychography with intrinsic molecular contrast
使用具有内在分子对比的深紫外编码叠层描记术进行无标记数字细胞病理学
- 批准号:
10718442 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
- 批准号:
10589512 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别: