Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
基本信息
- 批准号:10581591
- 负责人:
- 金额:$ 64.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsClinicalClinical ResearchCodeCohort StudiesComparative Effectiveness ResearchComplexConfounding Factors (Epidemiology)ConsumptionDataData SetData SourcesDatabasesElectronic Health RecordElementsEmpirical ResearchEnsureEnvironmentEvaluationFutureHealthcareHealthcare SystemsInfluentialsKnowledgeKnowledge acquisitionLeftLinkMachine LearningManualsMassachusettsMaximum Likelihood EstimateMedicaidMedicalMedicareMethodsModelingNamesNatural Language ProcessingNorth CarolinaOperative Surgical ProceduresPatient CarePatient-Focused OutcomesPatientsPatternPerformancePhysiciansProbabilityPropertyProxyRandomized, Controlled TrialsReportingResearchResearch DesignResearch PersonnelRiskRisk FactorsSemanticsSeveritiesSpecific qualifier valueStratificationStructureSymptomsSystemTechniquesTestingTexasTextTherapeuticTimeTrainingTreatment outcomeValidationWorkanalytical methodcare deliverycomparative effectiveness studycomparison controlcomparison groupcomputerizedcostdisease prognosisdisorder riskeHealthelectronic health databaseelectronic health informationelectronic health record systemevidence baseflexibilityhealth care service utilizationhigh dimensionalityimprovedinnovationmachine learning methodnovel strategiesoperationpreservationrandomized trialresearch studyroutine caresafety studysimulationsoundtooltreatment choiceunstructured data
项目摘要
Project Summary/Abstract
The routine operation of the US Healthcare system produces an abundance of electronically-stored data that
captures the care of patients as it is provided in settings outside of controlled research environments. The
potential for utilizing these data to inform future treatment choices and improve patient care and outcomes of all
patients in the very system that generates the data is widely acknowledged. Given these key properties of the
routine-care data and the abundance of electronic healthcare databases covering millions of patients, it is critical
to strengthen the rigor of analyses of such data. Our group has previously developed an analytic approach to
reduce bias when analyzing routine-care databases, which has proven effective in more than 50 empirical
research studies across a range of topics and data sources. However, this approach currently cannot incorporate
free-text information that is recorded in electronic health records, such as clinical notes and reports. This
limitation has left a large amount of rich patient information underutilized for clinical research. We thus aim to
adapt and refine a set of established computerized natural language processing algorithms that can identify and
extract useful information from the clinical notes and reports in electronic health records and incorporate them
into our validated analytical approach for balancing background risks of different comparison groups, a key step
to ensure fair evaluation when comparing different therapeutic options. To test this newly integrated and
augmented approach, we will implement and adapt it in simulation studies where we can evaluate and improve
the performance of these new analytic methods in a controlled but realistic fashion. In addition, we will assess
the performance of our new approach in 8 practical studies comparing medical or surgical treatments that are
highly relevant to patients. To ensure highest level of data completeness and quality, we have linked multiple
healthcare utilization (claims) databases, spanning from 2007 to 2016, with 3 electronic health records systems,
including one each in Massachusetts, North Carolina, and Texas. This data will allow testing of our newly
integrated approach in a variety of care delivery systems and data environments, which will be very informative
for the application of our products in the real-world settings.
项目概要/摘要
美国医疗保健系统的日常运行会产生大量的电子存储数据,
捕捉在受控研究环境之外的环境中提供的患者护理。这
利用这些数据为未来的治疗选择提供信息并改善患者护理和所有结果的潜力
生成数据的系统中的患者得到了广泛认可。鉴于这些关键属性
日常护理数据和覆盖数百万患者的丰富电子医疗保健数据库至关重要
加强此类数据分析的严谨性。我们小组之前开发了一种分析方法
在分析常规护理数据库时减少偏差,这已在 50 多个实证研究中被证明是有效的
跨一系列主题和数据源的研究。然而,这种方法目前无法纳入
电子健康记录中记录的自由文本信息,例如临床记录和报告。这
由于局限性,大量丰富的患者信息未能充分利用于临床研究。因此,我们的目标是
适应和完善一套已建立的计算机自然语言处理算法,可以识别和
从电子健康记录中的临床记录和报告中提取有用信息并将其合并
进入我们经过验证的分析方法来平衡不同比较组的背景风险,这是关键一步
以确保在比较不同治疗方案时进行公平评估。为了测试这个新集成的和
增强方法,我们将在模拟研究中实施和调整它,我们可以在其中评估和改进
以受控但现实的方式执行这些新的分析方法。此外,我们将评估
我们的新方法在 8 项实际研究中的表现,比较了以下药物或手术治疗方法:
与患者高度相关。为了确保最高水平的数据完整性和质量,我们链接了多个
2007年至2016年的医疗保健利用(索赔)数据库,拥有3个电子健康记录系统,
其中包括马萨诸塞州、北卡罗来纳州和德克萨斯州各一个。这些数据将允许测试我们的新产品
各种护理服务系统和数据环境中的综合方法,这将提供非常丰富的信息
用于我们的产品在现实世界中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA K LIN其他文献
JOSHUA K LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA K LIN', 18)}}的其他基金
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
- 批准号:
10634940 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10443345 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10672458 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10372142 - 财政年份:2020
- 资助金额:
$ 64.48万 - 项目类别:
Developing dynamic prognostic and risk-stratification models for informing prescribing decisions in older adults with Coronavirus Disease 2019
开发动态预后和风险分层模型,为患有 2019 年冠状病毒病的老年人的处方决策提供信息
- 批准号:
10189838 - 财政年份:2019
- 资助金额:
$ 64.48万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9365420 - 财政年份:2017
- 资助金额:
$ 64.48万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9766389 - 财政年份:2017
- 资助金额:
$ 64.48万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9983157 - 财政年份:2017
- 资助金额:
$ 64.48万 - 项目类别:
相似国自然基金
sc3S+结构型剪接元件预测算法揭示干性剪接因子ELAVL2调控肝母细胞瘤恶性演进的机制及临床应用研究
- 批准号:82302642
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习算法的针刺干预偏头痛预后差异生物学机制和临床-多组学预测模型构建研究
- 批准号:82374572
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
融合大脑白质微结构和网络拓扑分析的AD临床早期辅助诊断算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人类基因相关临床表型预测的高效算法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于早期临床数据-基因组学和机器学习算法研究脓毒症表型的构建、机制及治疗
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
- 批准号:
10648772 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别: