Thrombospondin1-regulated atrophy in the heart
血小板反应蛋白1调节的心脏萎缩
基本信息
- 批准号:10578361
- 负责人:
- 金额:$ 60.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAffectAnorexiaAtrophicAutomobile DrivingAutophagocytosisAutophagosomeBed restBindingBiologicalBiological AssayBiological ProcessBiotinBlood PlateletsCalcium BindingCaloric RestrictionCardiacCardiac MyocytesCardiomyopathiesCatabolic ProcessCatabolismCellsCellular biologyComplexDataDiseaseDoxorubicinDystrophinEIF-2alphaEndoplasmic ReticulumEquilibriumExtracellular MatrixExtracellular Matrix ProteinsFamilyFamily memberGene Expression ProfileGene FamilyGene TargetingGene TransferGenesGenetic TranscriptionGlycoproteinsHeartHeart DiseasesHeart HypertrophyHeart InjuriesHeart failureImmunohistochemistryImmunoprecipitationInjuryIntegrinsInvestigationKnockout MiceLAMP-2LigaseLocationLysosomesMalnutritionMammalsMediatingMedicalMembraneMessenger RNAMetabolicMolecularMolecular ChaperonesMovementMusMutant Strains MiceMyocardiumNeonatalNodalNutrientPaperPathologicPathway interactionsPatientsPhysiologicalPlayProcessProtein GlycosylationProtein SecretionProteinsRegulationRegulatory PathwayRoleSarcolemmaSecretory VesiclesSeriesSignal PathwaySignal TransductionSkeletal MuscleStainsStarvationStimulusStressStriated MusclesTestingThrombospondin 1ThrombospondinsTimeTissuesTransgenic MiceVentricular RemodelingVesicleWorkWorkloadadenoviral mediatedbiological adaptation to stresscancer cachexiaendoplasmic reticulum stresshealingin vivoinnovationmortalitymouse modelneonatal micenoveloverexpressionpressureresponseskeletal muscle wastingtranscription factor
项目摘要
Abstract
Like skeletal muscle myofibers, cardiomyocytes in the heart constantly adjust their size based on
perceived workload or disease stimulation, in which hypertrophic versus atrophic pathways are in
balance to achieve an appropriate equilibrium matched to real-time workloads. In a less
appreciated process, both heart and skeletal muscle can reduce size through molecular
regulatory pathways that cause tissue catabolism. This reduction in size is referred to as atrophy
and this process can underlie tissue remodeling and responses to disease stimulation or loss of
sufficient nutrients (such as starvation) in which both tissues can serve as metabolic reservoirs.
Here we uncovered a novel function for thrombospondin1 as a regulator of both cardiac and
skeletal muscle atrophy. We have previously shown that the thrombospondin gene family (Thbs1-
5) plays a critical role in membrane stability through effects on the ER stress response and
secretory pathways, as well as controlling the integrin and dystrophin-glycoprotein complexes
present with the sarcolemma. However, more recently we have discovered that Thbs1 is uniquely
induced by disease stimuli associated with cardiac remodeling and caloric restriction, and that
Thbs1 uniquely regulates cellular atrophy and autophagy through an intracellular pathway within
the ER/SR that functions at 2 levels. 1) Thbs1 directly binds and regulates the ER stress factor
PERK and eIF2α to mediate cardiomyocyte atrophy through the transcription factor ATF4, and 2)
Thbs1 selectively expands lysosomes and the vesicular pathway of autophagy. Hence, we
hypothesize that Thbs1 is an ER-dependent chaperone that mediates cardiomyocyte size
reduction, in part, by driving the catabolic process through autophagy. To investigate this
hypothesis, we will interrogate 2 specific aims: 1) To examine the mechanisms of cardiac atrophy
and autophagy through PERK/eIF2α/ATF4 signaling mediated by Thbs1 within the ER
compartment. 2) To examine a mechanism whereby cardiac autophagy is mediated by Thbs1-
dependent formation of lysosomes and associated catabolic vesicular activity. The proposed
course of investigation will be conducted in both cultured cardiomyocytes and in genetically
modified mouse models so that both reductionist and mechanistic approaches can be taken, as
well as in vivo assessment in a physiologically relevant context. The proposed application is
innovative as it will define for the first time what appears to be a novel cell biology pathway through
Thbs1 that controls striated muscle remodeling through atrophy and autophagy.
抽象的
与骨骼肌肌纤维一样,心脏中的心肌细胞会根据情况不断调整其大小。
感知到的工作量或疾病刺激,其中肥大与萎缩的途径处于
平衡以达到与实时工作负载相匹配的适当平衡。
在赞赏的过程中,心脏和骨骼肌都可以通过分子缩小尺寸
引起组织分解代谢的调节途径被称为萎缩。
这个过程可能是组织重塑和对疾病刺激或丧失的反应的基础
足够的营养(例如饥饿),两个组织都可以作为代谢库。
在这里,我们发现了血小板反应蛋白1作为心脏和心脏功能调节剂的新功能。
我们之前已经证明血小板反应蛋白基因家族(Thbs1-)。
5) 通过影响内质网应激反应在膜稳定性中发挥关键作用
分泌途径,以及控制整合素和肌营养不良蛋白-糖蛋白复合物
然而,最近我们发现 Thbs1 是独特的。
由与心脏重塑和热量限制相关的疾病刺激引起,并且
Thbs1 通过细胞内途径独特地调节细胞萎缩和自噬
ER/SR 在 2 个水平上发挥作用 1) Thbs1 直接结合并调节 ER 应激因子。
PERK 和 eIF2α 通过转录因子 ATF4 介导心肌细胞萎缩,2)
Thbs1 选择性地扩展溶酶体和自噬的囊泡途径。
Thbs1 是一种 ER 依赖性伴侣,介导心肌细胞大小
部分通过自噬驱动分解代谢过程来减少。
假设,我们将询问 2 个具体目标:1)检查心脏萎缩的机制
以及通过 ER 内 Thbs1 介导的 PERK/eIF2α/ATF4 信号传导进行自噬
2) 研究Thbs1-介导的心脏自噬机制。
溶酶体的依赖性形成和相关的分解代谢囊泡活性。
研究过程将在培养的心肌细胞和遗传细胞中进行
改良的小鼠模型可以采用还原论和机械论方法,如
以及生理相关背景下的体内评估。
创新,因为它将首次定义一种新的细胞生物学途径
Thbs1 通过萎缩和自噬控制横纹肌重塑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffery D Molkentin其他文献
Jeffery D Molkentin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffery D Molkentin', 18)}}的其他基金
Innate Immune Response in Cardiac Healing and Rejuvenation
心脏愈合和恢复活力中的先天免疫反应
- 批准号:
10625955 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Cell therapy regulates cardiac healing through innate immune response
细胞疗法通过先天免疫反应调节心脏愈合
- 批准号:
10561163 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Mouse Cardiac Physiology and Surgical Core (Core C)
小鼠心脏生理学和外科核心(核心 C)
- 批准号:
10625950 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Innate immune response signaling in cardiac injury healing
心脏损伤愈合中的先天免疫反应信号
- 批准号:
10544189 - 财政年份:2022
- 资助金额:
$ 60.36万 - 项目类别:
Innate immune response signaling in cardiac injury healing
心脏损伤愈合中的先天免疫反应信号
- 批准号:
10350020 - 财政年份:2022
- 资助金额:
$ 60.36万 - 项目类别:
Dissecting the role of the cardiac fibroblast in hypertrophy.
剖析心脏成纤维细胞在肥厚中的作用。
- 批准号:
10667595 - 财政年份:2022
- 资助金额:
$ 60.36万 - 项目类别:
Dissecting the role of the cardiac fibroblast in hypertrophy.
剖析心脏成纤维细胞在肥厚中的作用。
- 批准号:
10514028 - 财政年份:2022
- 资助金额:
$ 60.36万 - 项目类别:
In vivo role of the fibroblast in muscular dystrophy
成纤维细胞在肌营养不良症中的体内作用
- 批准号:
10377963 - 财政年份:2018
- 资助金额:
$ 60.36万 - 项目类别:
In vivo role of the fibroblast in muscular dystrophy
成纤维细胞在肌营养不良症中的体内作用
- 批准号:
9888312 - 财政年份:2018
- 资助金额:
$ 60.36万 - 项目类别:
Cardiac fibroblasts in postnatal development and adult injury response
心脏成纤维细胞在产后发育和成人损伤反应中的作用
- 批准号:
10217231 - 财政年份:2018
- 资助金额:
$ 60.36万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Exploiting the Metabolic Dependencies of Pediatric AML
利用儿科 AML 的代谢依赖性
- 批准号:
10664637 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别: