5 D impulse mapping in the embryonic heart
胚胎心脏的 5D 脉冲图
基本信息
- 批准号:10572425
- 负责人:
- 金额:$ 71.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBirdsCalciumCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCardiac conduction systemCollaborationsCompensationComplexConfocal MicroscopyCongenital AbnormalityCongenital Heart DefectsCoupledDataDetectionDevelopmentDyesElectrophysiology (science)EmbryoEmbryonic HeartEtiologyFetal Alcohol ExposureFluorescent DyesFluorescent in Situ HybridizationFunctional disorderGene ExpressionGenesGoalsHealthHeartImageImaging DeviceIncubatedLeadLightingLongitudinal StudiesMapsMembraneModelingMolecularMorphogenesisMotionMultimodal ImagingOpticsPathologyPatternPharmaceutical PreparationsPhysiologicalPhysiologyProductivityPropertyQuailQualifyingReactionReporterRoleScanningSignal TransductionStructureSystemTechniquesTechnologyTherapeuticTimeTissuesTransfectionTransgenic OrganismsTubular formationViralcalcium indicatorcardiogenesisdevelopmental cardiologyfluorescence imagingheart cellheart motionhemodynamicsimage registrationin vivonew technologypreventprotein expressionratiometricreconstructionresponseserial imagingsuccesstechnology developmenttooltwo photon microscopyvoltage
项目摘要
Project Summary/Abstract
Congenital heart defects (CHDs) are among the most common and devastating of birth defects. Abnormal
development of cardiac conduction often associates with CHD etiology. Investigating the development of
cardiac conduction is essential for us to understand the mechanisms behind such conditions.
Development of the cardiac conduction system (CCS) is a complicated transformation that comes about
through interplay between molecular signaling, structural properties, and physiological function, including
hemodynamics and electrophysiology. While an understanding of the molecular networks has progressed rapidly
in recent decades, tools to follow the physiological factors contributing to development and differentiation of the
CCS remain deficient. This gap is important to fill. Connecting molecular and functional information is key for
understanding pathologies of the conduction system and for guiding potential therapeutic strategies.
Optical mapping (OM) of transmembrane voltage or intracellular calcium dynamics in the heart using
voltage- or calcium-sensitive fluorescent dyes is a powerful tool for studying cardiac electrophysiology, and has
been adapted for imaging early embryonic hearts with great success. However currently, OM is limited to imaging
excised embryonic hearts which are stilled with excitation-contraction-uncoupler drugs. Removing fragile tubular
hearts from the structure and hemodynamic load of the embryo, and incubating them in dyes and drugs interferes
with the normal physiology and does not allow longitudinal study over stages of development.
The goal of this project is to develop technology to enable comprehensive, longitudinal imaging of the
electrophysiological function of the living, beating heart of the early avian embryo, cultured under near-
physiological conditions. We will target 1-2 days of active morphogenesis through the transition from
homogeneous to heterogeneous conduction velocity Three key technology developments are needed to
achieve this. (A) Episcopic, volumetric, fast imaging of fluorescent voltage and calcium indicators is needed to
image the intact, living embryo, and to capture conduction dynamics (Aim 1). (B) Motion correction is needed
to enable conduction mapping of the beating heart, without using excitation-contraction-uncoupling drugs (Aim
1). (C) Embryonic quail models with calcium and voltage reporters expressed in cardiomyocytes are needed to
enable in vivo and longitudinal imaging of electrophysiology (Aim 2).
The proposed technology will enable simultaneous 3D conduction mapping over two time scales, the
heartbeat, and heart development (5D impulse mapping). Coupled with quantitative 3D FISH, this will allow
point-to-point 3D registration between conduction data and gene/protein expression, which is not currently
available, enabling studies to better understand mechanisms of conduction function, dysfunction and
development (Aim 3).
项目概要/摘要
先天性心脏病(CHD)是最常见且最具破坏性的出生缺陷之一。异常
心脏传导的发展通常与 CHD 病因相关。调查发展
心脏传导对于我们了解此类情况背后的机制至关重要。
心脏传导系统(CCS)的发展是一个复杂的转变
通过分子信号传导、结构特性和生理功能之间的相互作用,包括
血流动力学和电生理学。虽然对分子网络的理解取得了迅速进展
近几十年来,追踪有助于发育和分化的生理因素的工具出现了。
CCS 仍然存在不足。填补这一空白很重要。连接分子和功能信息是关键
了解传导系统的病理学并指导潜在的治疗策略。
使用光学映射 (OM) 测量心脏中的跨膜电压或细胞内钙动态
电压或钙敏感荧光染料是研究心脏电生理学的有力工具,并且具有
已被用于早期胚胎心脏成像并取得了巨大成功。然而目前,OM仅限于成像
切除的胚胎心脏,用兴奋收缩解偶联剂药物使其静止。去除脆弱的管状体
从胚胎的结构和血流动力学负荷中观察心脏,并在染料和药物中孵育它们会产生干扰
具有正常的生理机能,不允许对发育阶段进行纵向研究。
该项目的目标是开发技术以实现对物体的全面纵向成像
近培养的早期禽胚胎活的、跳动的心脏的电生理功能
生理条件。我们的目标是通过从过渡到 1-2 天的活跃形态发生
均质到异质传导速度需要三项关键技术开发
实现这一点。 (A) 需要荧光电压和钙指示剂的落射、体积、快速成像
对完整的活胚胎进行成像,并捕获传导动力学(目标 1)。 (B) 需要运动校正
无需使用兴奋-收缩-解偶联药物即可绘制跳动心脏的传导图(Aim
1). (C) 需要具有在心肌细胞中表达的钙和电压报告基因的胚胎鹌鹑模型
实现电生理学的体内和纵向成像(目标 2)。
所提出的技术将能够在两个时间尺度上同时进行 3D 传导映射,
心跳和心脏发育(5D 脉冲映射)。与定量 3D FISH 相结合,这将允许
传导数据和基因/蛋白质表达之间的点对点 3D 配准,目前还没有
可用,使研究能够更好地了解传导功能、功能障碍和
发展(目标 3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW Martin ROLLINS其他文献
ANDREW Martin ROLLINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW Martin ROLLINS', 18)}}的其他基金
Strengthening Research Capacity in Innovative Global Health Technologies for Non-Communicable Diseases in Uganda
加强乌干达非传染性疾病创新全球卫生技术的研究能力
- 批准号:
10469877 - 财政年份:2022
- 资助金额:
$ 71.09万 - 项目类别:
Strengthening Research Capacity in Innovative Global Health Technologies for Non-Communicable Diseases in Uganda
加强乌干达非传染性疾病创新全球卫生技术的研究能力
- 批准号:
10594570 - 财政年份:2022
- 资助金额:
$ 71.09万 - 项目类别:
Cardiac radiofrequency ablation catheter with integrated OCT imaging
具有集成 OCT 成像功能的心脏射频消融导管
- 批准号:
9105411 - 财政年份:2015
- 资助金额:
$ 71.09万 - 项目类别:
Staging of upper tract urothelial cancer with optical coherence tomography
光学相干断层扫描对上尿路尿路上皮癌的分期
- 批准号:
8546313 - 财政年份:2012
- 资助金额:
$ 71.09万 - 项目类别:
Staging of upper tract urothelial cancer with optical coherence tomography
光学相干断层扫描对上尿路尿路上皮癌的分期
- 批准号:
8256928 - 财政年份:2012
- 资助金额:
$ 71.09万 - 项目类别:
Investigating the Early Embryonic Murine Heart Using Optical Coherence Tomography
使用光学相干断层扫描研究早期胚胎小鼠心脏
- 批准号:
7635931 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
Investigating the Early Embryonic Murine Heart Using Optical Coherence Tomography
使用光学相干断层扫描研究早期胚胎小鼠心脏
- 批准号:
7908895 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
Investigating the Early Embryonic Murine Heart Using Optical Coherence Tomography
使用光学相干断层扫描研究早期胚胎小鼠心脏
- 批准号:
8099497 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
Investigating the Early Embryonic Murine Heart Using Optical Coherence Tomography
使用光学相干断层扫描研究早期胚胎小鼠心脏
- 批准号:
7908895 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
Investigating the Early Embryonic Murine Heart Using Optical Coherence Tomography
使用光学相干断层扫描研究早期胚胎小鼠心脏
- 批准号:
8277102 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Prenatal valve formation in congenital heart disease
先天性心脏病的产前瓣膜形成
- 批准号:
10716712 - 财政年份:2023
- 资助金额:
$ 71.09万 - 项目类别:
Probing form and function of memory representations in the hippocampus of memory expert birds
探索记忆专家鸟类海马体记忆表征的形式和功能
- 批准号:
10641392 - 财政年份:2023
- 资助金额:
$ 71.09万 - 项目类别:
Integration of Brain and Face Morphogenesis in Normal and Disease Phenotypes
正常和疾病表型中大脑和面部形态发生的整合
- 批准号:
10826915 - 财政年份:2023
- 资助金额:
$ 71.09万 - 项目类别:
Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
- 批准号:
10811154 - 财政年份:2023
- 资助金额:
$ 71.09万 - 项目类别:
Role of retinoic acid signaling in fovea development
视黄酸信号在中央凹发育中的作用
- 批准号:
10541865 - 财政年份:2022
- 资助金额:
$ 71.09万 - 项目类别: