Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
基本信息
- 批准号:10811154
- 负责人:
- 金额:$ 32.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAtomic Force MicroscopyBehaviorBiomechanicsBirdsBirthCell physiologyCellsCephalicChemicalsChick EmbryoComplexCongenital DisordersCuesDataData AnalysesDetectionDevelopmentDiseaseEctodermElasticityEmbryoEmbryonic DevelopmentEnvironmentEpitheliumEventEvolutionFailureFluorescenceGelGeneticGoalsHourImageImaging DeviceIn VitroIncubatorsInheritedKnowledgeLabelLasersLightingLiteratureMeasurementMechanicsMesenchymalMesodermMethodologyMicroscopeMicroscopyModulusMolecularMolecular AnalysisMorphogenesisMorphologic artifactsMultimodal ImagingMusNamesNeural Crest CellNeural Tube ClosureNeurophysiology - biologic functionOpticsOrganOrganogenesisPhototoxicityPlayPopulationPreventionProcessRefractive IndicesResolutionRoleSamplingScanningSignal TransductionSpeedSystemTechniquesTechnologyTestingTimeTissuesXenopusblastomere structurecell behaviorcell motilitydesigndevelopmental diseaseembryo cellembryo cultureembryo tissueepithelial to mesenchymal transitiongenetic analysisimprovedin vivoin vivo imaginginnovationinsightinstrumentmalformationmechanical propertiesmechanical signalmetermicroscopic imagingmigrationneural plateneuroimagingnew technologynovelsuccesstooltumor
项目摘要
Project Summary
Neural crest cells (NCCs) are a highly migratory cell population that collectively migrates to various places and
involves organogenesis during embryo development. The aberrant NCC development can lead to severe
congenital and hereditary malformations and diseases. In vitro and recent in vivo evidence show the NCCs
coordinate their behaviors upon mechanical changes of external environment, suggesting the crucial
involvement of biomechanical cues. However, there are literature controversies regarding data interpretation for
implementing contact-based tool in 3D embryonic tissue where involves complex mechanical crosstalk, and it is
unknown if there exist a universal mechanical mechanism across species among which NCCs behave very
differently. One major reason is the lack of non-contact and non-invasive tool that can access 3D biomechanics
of embryonic cell and tissue with high resolution and high speed in vivo. This proposal addresses this unmet
need based on a novel optical technology named Brillouin microscopy. The goal of this project is to develop and
validate a coaxial line scanning Brillouin microscopy (c-LSBM) for rapidly acquiring mechanical images of NCCs
and surrounding tissues in vivo. Specifically, we will focus on the biomechanics during the onset of epithelial-
mesenchymal transition and the collective migration, which are crucial events for enabling the function of NCCs
in morphogenesis. To achieve this goal, we will first develop c-LSBM into an instrument, which overcomes
several technical limitations of existing Brillouin technology and allows distortion-free measurement. In addition,
the c-LSBM will be equipped with fluorescence channels for multimodal imaging, and the mechanical relevance
of acquired Brillouin data will be validated against gold-standard AFM technique (Aim 1). We will then use this
new non-invasive tool to elucidate the role of tissue biomechanics in affecting the migration behavior of NCCs in
chick embryo in vivo, which enables us to address the current literature controversies regarding how cells adapt
their stiffness to the mechanical environment (Aim 2). In summary, the c-LSBM instrument can serve as a new
tool for in-depth biomechanical studies of embryo development in vivo. The non-contact and non-invasive
characters of this Brillouin technology can provide new data to advance our knowledge of the physical aspects
of development. Together with existing tools as well as genetic & molecular analysis, this will provide a complete
methodology for investigating the developmental disorders and the prevention of birth diseases.
项目概要
神经嵴细胞(NCC)是一种高度迁移的细胞群,它们集体迁移到不同的地方并
涉及胚胎发育过程中的器官发生。 NCC 的异常发展可能会导致严重的后果
先天性和遗传性畸形和疾病。体外和最近的体内证据表明 NCC
根据外部环境的机械变化来协调他们的行为,这表明了关键的
生物力学线索的参与。然而,关于数据解释存在文献争议
在 3D 胚胎组织中实施基于接触的工具,其中涉及复杂的机械串扰,并且它是
未知是否存在跨物种的通用机械机制,其中 NCC 表现非常好
不同。主要原因之一是缺乏能够访问 3D 生物力学的非接触式、非侵入性工具
体内高分辨率和高速的胚胎细胞和组织。该提案解决了这一未满足的问题
需要基于一种名为布里渊显微镜的新型光学技术。该项目的目标是开发和
验证同轴线扫描布里渊显微镜 (c-LSBM) 是否能够快速获取 NCC 的机械图像
以及体内周围组织。具体来说,我们将重点关注上皮细胞发生过程中的生物力学。
间质转化和集体迁移是 NCC 发挥功能的关键事件
在形态发生中。为了实现这个目标,我们首先将c-LSBM开发成一种仪器,它克服了
现有布里渊技术的一些技术限制,并允许无失真测量。此外,
c-LSBM 将配备用于多模态成像的荧光通道,以及机械相关性
获得的布里渊数据将根据黄金标准 AFM 技术进行验证(目标 1)。然后我们将使用这个
新的非侵入性工具阐明组织生物力学在影响 NCC 迁移行为中的作用
体内鸡胚,这使我们能够解决当前有关细胞如何适应的文献争议
它们对机械环境的刚度(目标 2)。综上所述,c-LSBM 仪器可以作为一种新的
用于深入研究体内胚胎发育的生物力学的工具。非接触式、非侵入式
这种布里渊技术的特点可以提供新的数据来增进我们对物理方面的了解
的发展。与现有工具以及遗传和分子分析一起,这将提供完整的
研究发育障碍和预防出生疾病的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jitao Zhang其他文献
Jitao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jitao Zhang', 18)}}的其他基金
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
- 批准号:
10540467 - 财政年份:2022
- 资助金额:
$ 32.99万 - 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
- 批准号:
10208917 - 财政年份:2019
- 资助金额:
$ 32.99万 - 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
- 批准号:
10790936 - 财政年份:2019
- 资助金额:
$ 32.99万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别: