Mechanism of membrane fusion involving the Gram-negative bacteria outer membrane

涉及革兰氏阴性菌外膜的膜融合机制

基本信息

  • 批准号:
    10089745
  • 负责人:
  • 金额:
    $ 37.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Gram-negative bacteria constitute the majority of antibiotic resistant organisms identified as urgent threats to human health by the Center for Disease Control and Prevention. A major reason why Gram-negative bacteria are resistant to modern antibiotics is the impermeable nature of their outer membrane lipopolysaccharide (LPS) layer. This impermeable nature is due to the strong lateral interaction between neighboring LPS molecules that includes lipid A, the core saccharide, and the O-antigen. Nanotherapeutics capable of overcoming this barrier to successfully deliver antibiotics to Gram-negative bacteria will be of immense importance for human health. It is our intent to develop such nanotherapeutics by using the knowledge attained from delineating the mechanism by which a Gram-negative bacteriophage fuses its external bacterial phospholipid (BPL) membrane with the LPS of its host for initiating infection. Embedded into the Cystovirus BPL are multimeric protein complexes, referred to as spikes, that recognize the Gram-negative host and perform fusion. These proteins are analogous to, but different from, the better studied eukaryotic proteins responsible for membrane fusion (e.g. HIV env, West Nile Virus glycoprotein E, and Herpesviridae gB protein). The intent of this proposal is to investigate the mechanism by which spikes from three different members of the Cystovirus family recognize their hosts and drive membrane fusion. The goals of this proposal are to determine the structure of the spikes for establishing a structural scaffold for biochemical and biophysical studies (Aim 1), determine the mechanism of cellular recognition (Aim 2), and determine the biochemical determinants responsible for LPS- BPL fusion (Aim 3). The long-term goal of this project is to use the spikes for delivery of antibiotics to specific strains of pathogenic Gram- negative bacteria.
项目概要/摘要 革兰氏阴性菌占抗生素抗性微生物的大多数,被认为是对抗生素的紧急威胁 人类健康由疾病控制和预防中心负责。革兰氏阴性菌产生的主要原因 对现代抗生素具有耐药性的原因在于其外膜脂多糖 (LPS) 的不渗透性 层。这种不可渗透的性质是由于相邻 LPS 分子之间强烈的横向相互作用造成的 包括脂质A、核心糖和O-抗原。纳米疗法能够克服这一障碍 成功地将抗生素传递给革兰氏阴性菌对于人类健康至关重要。这是 我们打算利用从描述机制中获得的知识来开发这种纳米疗法 革兰氏阴性噬菌体将其外部细菌磷脂 (BPL) 膜与 其宿主的LPS用于引发感染。嵌入囊病毒 BPL 中的是多聚蛋白复合物, 称为刺突,可识别革兰氏阴性宿主并进行融合。这些蛋白质是类似的 与更好地研究的负责膜融合的真核蛋白(例如 HIV env、West 尼罗病毒糖蛋白 E 和疱疹病毒 gB 蛋白)。该提案的目的是调查 来自囊病毒家族三个不同成员的尖峰识别其宿主的机制 驱动膜融合。该提案的目标是确定尖峰的结构,以建立 用于生化和生物物理研究的结构支架(目标 1),确定细胞的机制 识别(目标 2),并确定负责 LPS-BPL 融合的生化决定因素(目标 3)。这 该项目的长期目标是使用尖峰将抗生素输送到特定的致病性革兰氏菌菌株 阴性菌。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Khayat其他文献

Reza Khayat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reza Khayat', 18)}}的其他基金

Mechanism of membrane fusion involving the Gram-negative bacteria outer membrane
涉及革兰氏阴性菌外膜的膜融合机制
  • 批准号:
    10615241
  • 财政年份:
    2021
  • 资助金额:
    $ 37.83万
  • 项目类别:
Mechanism of membrane fusion involving the Gram-negative bacteria outer membrane
涉及革兰氏阴性菌外膜的膜融合机制
  • 批准号:
    10400637
  • 财政年份:
    2021
  • 资助金额:
    $ 37.83万
  • 项目类别:
Mechanism of cellular recognition and entry by a circovirus
圆环病毒识别和进入细胞的机制
  • 批准号:
    8667019
  • 财政年份:
    2014
  • 资助金额:
    $ 37.83万
  • 项目类别:
Mechanism of cellular recognition and entry by a circovirus
圆环病毒识别和进入细胞的机制
  • 批准号:
    8826684
  • 财政年份:
    2014
  • 资助金额:
    $ 37.83万
  • 项目类别:
Biophysical studies of a Sulfolobus icosahedral virus
硫化叶菌二十面体病毒的生物物理学研究
  • 批准号:
    7213323
  • 财政年份:
    2005
  • 资助金额:
    $ 37.83万
  • 项目类别:
Biophysical studies of a Sulfolobus icosahedral virus
硫化叶菌二十面体病毒的生物物理学研究
  • 批准号:
    6937283
  • 财政年份:
    2005
  • 资助金额:
    $ 37.83万
  • 项目类别:
Biophysical studies of a Sulfolobus icosahedral virus
硫化叶菌二十面体病毒的生物物理学研究
  • 批准号:
    7054091
  • 财政年份:
    2005
  • 资助金额:
    $ 37.83万
  • 项目类别:

相似国自然基金

D型、环化结构支持的高稳定牛乳铁蛋白肽分子设计、抗菌活性及作用机理
  • 批准号:
    31702146
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成多种数据源识别导致常见疾病的遗传变异
  • 批准号:
    60805010
  • 批准年份:
    2008
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanism of membrane fusion involving the Gram-negative bacteria outer membrane
涉及革兰氏阴性菌外膜的膜融合机制
  • 批准号:
    10615241
  • 财政年份:
    2021
  • 资助金额:
    $ 37.83万
  • 项目类别:
Mechanism of membrane fusion involving the Gram-negative bacteria outer membrane
涉及革兰氏阴性菌外膜的膜融合机制
  • 批准号:
    10400637
  • 财政年份:
    2021
  • 资助金额:
    $ 37.83万
  • 项目类别:
A High-Throughput Molecular Platform for Antimicrobial Discovery and Study
用于抗菌药物发现和研究的高通量分子平台
  • 批准号:
    9923526
  • 财政年份:
    2016
  • 资助金额:
    $ 37.83万
  • 项目类别:
A High-Throughput Molecular Platform for Antimicrobial Discovery and Study
用于抗菌药物发现和研究的高通量分子平台
  • 批准号:
    9155253
  • 财政年份:
    2016
  • 资助金额:
    $ 37.83万
  • 项目类别:
Newly Identified mechanisms of Ceftaroline Resistance in MRSA Clinical Strains
新发现的 MRSA 临床菌株头孢洛林耐药机制
  • 批准号:
    9320334
  • 财政年份:
    2016
  • 资助金额:
    $ 37.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了