Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
基本信息
- 批准号:9004701
- 负责人:
- 金额:$ 4.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcidsAddressAdherenceAmino SugarsAnabolismAnimal ModelAnimalsAttenuatedBinding SitesBiocompatibleBioinformaticsBiologicalBiological AssayCampylobacter jejuniCarbohydratesCell surfaceCellsChemicalsCommunicable DiseasesDevelopmentElementsEmployee StrikesEnzymesEukaryotaFamily memberFimbriae ProteinsFoundationsFutureGeneticGlycoconjugatesGlycoproteinsGoalsHSV glycoprotein CHealthHumanIn VitroIndiumInfectionIntestinesKnowledgeLeadLigandsLightLinkMediatingMembrane GlycoproteinsMethodsMicrobeModificationMonosaccharidesNeisseria gonorrhoeaeOrganismOutcomePathogenesisPathogenicityPathway interactionsPhenotypePolysaccharidesProductionProkaryotic CellsPropertyProtein GlycosylationProteinsReactionReagentRelative (related person)ResearchResearch SupportRoleSequence HomologySeveritiesSialic AcidsStructureSystemTargeted ResearchTransferaseValidationVirulenceVirulence Factorsanalogbacillosaminebasecell motilitydesignenzyme biosynthesisfascinategenetic approachglycoprotein biosynthesisglycosylationin vivoinhibitor/antagonistinsightmicrobialmicroorganismpathogenprototypesmall moleculesugartargeted sequencingtool
项目摘要
DESCRIPTION (provided by applicant): Glycans decorating N- and O-linked glycoproteins, which constitute critical elements of the cell-surface landscape of many Gram-negative pathogens, integrate a variety of prokaryote-specific carbohydrates including di-N-acetyl bacillosamine (diNAcBac) and pseudaminic acid (Pse). There is growing genetic and biological evidence that modified saccharides, such as diNAcBac and Pse, are essential elements in the prokaryotic glycoconjugate repertoire and that cell surface glycoproteins that feature these sugars, serve as virulence factors, which mediate pathogen-host interactions and contribute to the severity of microbial infections. Previous studies have highlighted the fact that there is a striking diversity of monosaccharides in prokaryotes, relative to eukaryotes, however, there is a major unmet need for synthetic small molecule inhibitors that can be used as selective tools to acutely perturb their biosynthesis to understand the associations between modified sugars and bacterial pathogenicity. The proposed research involves fragment-based inhibitor design and structure-guided ligand optimization approaches together with incisive in vitro and in vivo analyses in the development of inhibitors of amino sugar acetyl transferases that catalyze key steps in the biosynthesis of UDP-diNAcBac and CMP-Pse. DiNAcBac and Pse are particularly prevalent microbial carbohydrates, which feature in the N- and O-linked glycoproteins of C. jejuni, A. baumannii and N. gonorrhoeae. These microbial pathogens are the targets of this research due to the established connections between protein glycosylation and virulence. We propose that small molecule inhibitors that acutely inhibit essential early steps in glycoprotein biosynthesis will allow for temporal control of glycoprotein biosynthesis that is not feasible with
genetic approaches alone. Such inhibitors will be valuable new chemical tools that can provide insight into the effects of acutely inhibiting glycoprotein biosynthesis on motility, adherence and
invasion in the native pathogen and in a pathogen/host context. The availability of inhibitors with
appropriate biological properties will also validate the essentiality of carbohydrate modifications
on microbial virulence in microorganisms (C. jejuni and N. gonorrhoeae) where genetic phenotyping and animal studies have provided clear evidence of the connections between glycosylation and virulence. This research will form a foundation for the application of similar strategic approaches with other pathogens that threaten human health where bioanalytical and bioinformatics approaches have been employed to predict the existence of glycoproteins that include highly modified carbohydrate building blocks. Ultimately we will address the central hypothesis that the enzymes that catalyze formation of unusual microbe-specific carbohydrate building blocks represent an "Achilles' heel" that can be exploited in the development of agents that can attenuate the virulence of serious human pathogens, which can be exploited in the battle against infectious diseases.
描述(由申请人提供):装饰N-和O连接的糖蛋白的聚糖,构成了许多革兰氏阴性病原体细胞表面景观的关键要素,它整合了多种原核生物特异性碳水化合物,包括Di-N-N-乙酰基乙酰基氨基胺(Dinacbac)和Pseudaminic(PSE)。越来越多的遗传和生物学证据表明,修饰的糖(例如dinacbac和pse)是原核糖酶缀合库中的重要元素,并且具有这些糖具有这些糖的细胞表面糖蛋白,这些糖具有毒力,它是毒力因子,它们介导病原体相互作用并导致严重的微生物感染。先前的研究强调了一个事实,即与真核生物相对于真核生物中的单糖的多样性令人惊讶,但是,对于合成小分子抑制剂的主要未满足需要,可以用作选择性的工具,可以用作敏锐的生物合成的选择性工具,以了解其生物合成以了解修改的糖和细菌质量patheritial pathential pathotorications。 提出的研究涉及基于碎片的抑制剂设计和结构引导的配体优化方法,以及敏锐的体外和体内分析,在氨基糖乙酰基转移酶抑制剂的发展中,催化UDP-DINACBAC和CMP-PSE生物合成的关键步骤。 Dinacbac和PSE特别流行的微生物碳水化合物,它们在C. jejuni,A。Baumantii和N. Gonorrhoeae的N-和O连接糖蛋白中具有。由于蛋白质糖基化和毒力之间建立的联系,这些微生物病原体是本研究的靶标。 我们提出,急性抑制糖蛋白生物合成的早期步骤的小分子抑制剂将允许对糖蛋白生物合成的时间控制,而糖蛋白生物合成是不可行的
仅遗传方法。这种抑制剂将是有价值的新化学工具,可以洞悉急性抑制糖蛋白生物合成对运动,粘附和粘附性和
在天然病原体和病原体/宿主环境中的入侵。抑制剂的可用性
适当的生物学特性还将验证碳水化合物修饰的重要性
关于微生物的微生物毒力(C. jejuni和N. gonorrhoeae),遗传表型和动物研究的微生物毒力为糖基化与毒力之间的联系提供了明确的证据。这项研究将构成针对威胁人类健康的其他病原体应用类似的战略方法的基础,在这些病原体中,已经采用了生物分析和生物信息学方法来预测包括高度修改的碳水化合物构建基块的糖蛋白的存在。最终,我们将解决以下核心假设:催化不寻常的微生物特异性碳水化合物构件的形成的酶代表了一种“阿喀琉斯”脚跟,可以在代理的发展中利用,可以减轻严重的人病原体的毒力,这可以在反感染性疾病中被剥削。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barbara Imperiali其他文献
Barbara Imperiali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barbara Imperiali', 18)}}的其他基金
Development and application of glycan readers for the detection and analysis of bacterial glycoconjugates
用于细菌糖复合物检测和分析的聚糖读数器的开发和应用
- 批准号:
9295172 - 财政年份:2017
- 资助金额:
$ 4.89万 - 项目类别:
Acquisition of Octet Biolayer Interferometry system for MIT biophysics facility
为麻省理工学院生物物理设施采购 Octet Biolayer 干涉测量系统
- 批准号:
8640541 - 财政年份:2014
- 资助金额:
$ 4.89万 - 项目类别:
PGT Inhibitors Mapped From a Tunicamycin Blueprint
根据衣霉素蓝图绘制的 PGT 抑制剂
- 批准号:
8508008 - 财政年份:2013
- 资助金额:
$ 4.89万 - 项目类别:
PGT Inhibitors Mapped From a Tunicamycin Blueprint
根据衣霉素蓝图绘制的 PGT 抑制剂
- 批准号:
8607890 - 财政年份:2013
- 资助金额:
$ 4.89万 - 项目类别:
Inhibition of Glycoprotein Biosynthesis in Gram-Negative Pathogens
革兰氏阴性病原体糖蛋白生物合成的抑制
- 批准号:
8420337 - 财政年份:2012
- 资助金额:
$ 4.89万 - 项目类别:
Inhibition of prokaryote-specific saccharide biosynthesis in microbial pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
- 批准号:
8235459 - 财政年份:2012
- 资助金额:
$ 4.89万 - 项目类别:
Inhibition of Glycoprotein Biosynthesis in Gram-Negative Pathogens
革兰氏阴性病原体糖蛋白生物合成的抑制
- 批准号:
8262295 - 财政年份:2012
- 资助金额:
$ 4.89万 - 项目类别:
Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
- 批准号:
8757021 - 财政年份:2012
- 资助金额:
$ 4.89万 - 项目类别:
Inhibition of prokaryote-specific saccharide biosynthesis in microbial pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
- 批准号:
8446469 - 财政年份:2012
- 资助金额:
$ 4.89万 - 项目类别:
Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
- 批准号:
9265228 - 财政年份:2012
- 资助金额:
$ 4.89万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
- 批准号:52304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
- 批准号:82330029
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
RNF31通过厚壁菌代谢产物3-氧代胆碱酸调控RORγ信号轴抑制Th17细胞分化—溃疡性结肠炎干预新靶点
- 批准号:82360112
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
- 批准号:32371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Lewis Base Ligands Designed to Control Carbon-Carbon Bond Formation
旨在控制碳-碳键形成的路易斯碱配体
- 批准号:
10713775 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别:
Toward synthetic chemically defined mRNA for human therapeutics
用于人类治疗的合成化学定义的 mRNA
- 批准号:
10649299 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别:
Rapid point-of-care detection of Trichomonas Vaginalis
快速即时检测阴道毛滴虫
- 批准号:
10699836 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别:
Infusion device optimization by addressing root causes of the inflammatory response
通过解决炎症反应的根本原因来优化输注装置
- 批准号:
10443241 - 财政年份:2022
- 资助金额:
$ 4.89万 - 项目类别: