Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens

微生物病原体中原核生物特异性糖生物合成的抑制

基本信息

项目摘要

DESCRIPTION (provided by applicant): Glycans decorating N- and O-linked glycoproteins, which constitute critical elements of the cell-surface landscape of many Gram-negative pathogens, integrate a variety of prokaryote-specific carbohydrates including di-N-acetyl bacillosamine (diNAcBac) and pseudaminic acid (Pse). There is growing genetic and biological evidence that modified saccharides, such as diNAcBac and Pse, are essential elements in the prokaryotic glycoconjugate repertoire and that cell surface glycoproteins that feature these sugars, serve as virulence factors, which mediate pathogen-host interactions and contribute to the severity of microbial infections. Previous studies have highlighted the fact that there is a striking diversity of monosaccharides in prokaryotes, relative to eukaryotes, however, there is a major unmet need for synthetic small molecule inhibitors that can be used as selective tools to acutely perturb their biosynthesis to understand the associations between modified sugars and bacterial pathogenicity. The proposed research involves fragment-based inhibitor design and structure-guided ligand optimization approaches together with incisive in vitro and in vivo analyses in the development of inhibitors of amino sugar acetyl transferases that catalyze key steps in the biosynthesis of UDP-diNAcBac and CMP-Pse. DiNAcBac and Pse are particularly prevalent microbial carbohydrates, which feature in the N- and O-linked glycoproteins of C. jejuni, A. baumannii and N. gonorrhoeae. These microbial pathogens are the targets of this research due to the established connections between protein glycosylation and virulence. We propose that small molecule inhibitors that acutely inhibit essential early steps in glycoprotein biosynthesis will allow for temporal control of glycoprotein biosynthesis that is not feasible with genetic approaches alone. Such inhibitors will be valuable new chemical tools that can provide insight into the effects of acutely inhibiting glycoprotein biosynthesis on motility, adherence and invasion in the native pathogen and in a pathogen/host context. The availability of inhibitors with appropriate biological properties will also validate the essentiality of carbohydrate modifications on microbial virulence in microorganisms (C. jejuni and N. gonorrhoeae) where genetic phenotyping and animal studies have provided clear evidence of the connections between glycosylation and virulence. This research will form a foundation for the application of similar strategic approaches with other pathogens that threaten human health where bioanalytical and bioinformatics approaches have been employed to predict the existence of glycoproteins that include highly modified carbohydrate building blocks. Ultimately we will address the central hypothesis that the enzymes that catalyze formation of unusual microbe-specific carbohydrate building blocks represent an "Achilles' heel" that can be exploited in the development of agents that can attenuate the virulence of serious human pathogens, which can be exploited in the battle against infectious diseases.
描述(由申请人提供):装饰N-和O-连接糖蛋白的聚糖构成了许多革兰氏阴性病原体细胞表面景观的关键元素,整合了多种原核生物特异性碳水化合物,包括二-N-乙酰基芽孢杆菌胺( diNAcBac) 和假胺酸 (Pse)。越来越多的遗传和生物学证据表明,修饰的糖类,例如 diNAcBac 和 Pse,是原核糖复合物库中的重要元素,并且以这些糖为特征的细胞表面糖蛋白充当毒力因子,介导病原体-宿主相互作用并有助于微生物感染的严重程度。先前的研究强调了这样一个事实,即相对于真核生物,原核生物中的单糖存在显着的多样性,然而,对合成小分子抑制剂的需求尚未得到满足,这些抑制剂可以用作选择性工具来严重扰乱其生物合成以了解其中的关联修饰糖和细菌致病性之间的关系。 拟议的研究涉及基于片段的抑制剂设计和结构引导的配体优化方法,以及在氨基糖乙酰转移酶抑制剂的开发中进行深入的体外和体内分析,这些抑制剂催化 UDP-diNAcBac 和 CMP-Pse 生物合成的关键步骤。 DiNAcBac 和 Pse 是特别普遍的微生物碳水化合物,它们存在于空肠弯曲菌、鲍曼不动杆菌和淋病奈瑟菌的 N 连接和 O 连接糖蛋白中。由于蛋白质糖基化和毒力之间已建立联系,这些微生物病原体成为本研究的目标。 我们提出,急性抑制糖蛋白生物合成中重要的早期步骤的小分子抑制剂将允许暂时控制糖蛋白生物合成,而这在现有方法中是不可行的。 单独的遗传方法。此类抑制剂将成为有价值的新化学工具,可以深入了解急性抑制糖蛋白生物合成对运动性、粘附性和运动性的影响。 入侵天然病原体和病原体/宿主环境。抑制剂的可用性 适当的生物学特性也将验证碳水化合物修饰的必要性 关于微生物(空肠弯曲菌和淋病奈瑟菌)的微生物毒力,其中遗传表型和动物研究为糖基化和毒力之间的联系提供了明确的证据。这项研究将为对威胁人类健康的其他病原体应用类似的战略方法奠定基础,其中生物分析和生物信息学方法已被用来预测包括高度修饰的碳水化合物构建模块的糖蛋白的存在。最终,我们将解决一个中心假设,即催化形成不寻常的微生物特异性碳水化合物构建块的酶代表了一个“阿喀琉斯之踵”,可用于开发能够减弱严重人类病原体毒力的药物,这些药物可以在与传染病的斗争中被利用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara Imperiali其他文献

Barbara Imperiali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara Imperiali', 18)}}的其他基金

Development and application of glycan readers for the detection and analysis of bacterial glycoconjugates
用于细菌糖复合物检测和分析的聚糖读数器的开发和应用
  • 批准号:
    9295172
  • 财政年份:
    2017
  • 资助金额:
    $ 4.89万
  • 项目类别:
Acquisition of Octet Biolayer Interferometry system for MIT biophysics facility
为麻省理工学院生物物理设施采购 Octet Biolayer 干涉测量系统
  • 批准号:
    8640541
  • 财政年份:
    2014
  • 资助金额:
    $ 4.89万
  • 项目类别:
PGT Inhibitors Mapped From a Tunicamycin Blueprint
根据衣霉素蓝图绘制的 PGT 抑制剂
  • 批准号:
    8508008
  • 财政年份:
    2013
  • 资助金额:
    $ 4.89万
  • 项目类别:
PGT Inhibitors Mapped From a Tunicamycin Blueprint
根据衣霉素蓝图绘制的 PGT 抑制剂
  • 批准号:
    8607890
  • 财政年份:
    2013
  • 资助金额:
    $ 4.89万
  • 项目类别:
Inhibition of Glycoprotein Biosynthesis in Gram-Negative Pathogens
革兰氏阴性病原体糖蛋白生物合成的抑制
  • 批准号:
    8420337
  • 财政年份:
    2012
  • 资助金额:
    $ 4.89万
  • 项目类别:
Inhibition of prokaryote-specific saccharide biosynthesis in microbial pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    8235459
  • 财政年份:
    2012
  • 资助金额:
    $ 4.89万
  • 项目类别:
Inhibition of Glycoprotein Biosynthesis in Gram-Negative Pathogens
革兰氏阴性病原体糖蛋白生物合成的抑制
  • 批准号:
    8262295
  • 财政年份:
    2012
  • 资助金额:
    $ 4.89万
  • 项目类别:
Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    8757021
  • 财政年份:
    2012
  • 资助金额:
    $ 4.89万
  • 项目类别:
Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    9265228
  • 财政年份:
    2012
  • 资助金额:
    $ 4.89万
  • 项目类别:
Inhibition of prokaryote-specific saccharide biosynthesis in microbial pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    8446469
  • 财政年份:
    2012
  • 资助金额:
    $ 4.89万
  • 项目类别:

相似国自然基金

琥珀酸代谢重编逆转碳青霉烯耐药铜绿假单胞菌耐药性的研究
  • 批准号:
    32370191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
植物特有蛋白FENT响应脱落酸信号调控囊泡运输的分子机制研究
  • 批准号:
    32370329
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
钽铌酸钾晶体多效应耦合及光场调控极化序构的电光性能增益机制研究
  • 批准号:
    62305089
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
  • 批准号:
    82370423
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于胆汁酸介导的TGR5/GLP-1环路探究解毒通络调肝方调控肠肝轴改善T2DM-IR作用机制
  • 批准号:
    82374380
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Toward synthetic chemically defined mRNA for human therapeutics
用于人类治疗的合成化学定义的 mRNA
  • 批准号:
    10649299
  • 财政年份:
    2023
  • 资助金额:
    $ 4.89万
  • 项目类别:
Lewis Base Ligands Designed to Control Carbon-Carbon Bond Formation
旨在控制碳-碳键形成的路易斯碱配体
  • 批准号:
    10713775
  • 财政年份:
    2023
  • 资助金额:
    $ 4.89万
  • 项目类别:
Rapid point-of-care detection of Trichomonas Vaginalis
快速即时检测阴道毛滴虫
  • 批准号:
    10699836
  • 财政年份:
    2023
  • 资助金额:
    $ 4.89万
  • 项目类别:
Infusion device optimization by addressing root causes of the inflammatory response
通过解决炎症反应的根本原因来优化输注装置
  • 批准号:
    10443241
  • 财政年份:
    2022
  • 资助金额:
    $ 4.89万
  • 项目类别:
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
  • 批准号:
    10686166
  • 财政年份:
    2022
  • 资助金额:
    $ 4.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了