Inhibition of Glycoprotein Biosynthesis in Gram-Negative Pathogens

革兰氏阴性病原体糖蛋白生物合成的抑制

基本信息

项目摘要

DESCRIPTION (provided by applicant): It is well known that antibiotic resistance is a critical issue in the battle against microbial pathogens. Less well known is the way forward to new approaches in antibacterial therapy that address the serious consequences of resistance development. In the past decade bacterial cell surface glycoconjugates, including the lipopolysaccharide (LPS) component of the outer cell wall and cell surface N- and O-linked glycoproteins of several medically relevant Gram-negative bacteria pathogens, have been characterized in molecular detail and found to be essential for host-dependent virulence and pathogenicity. We propose to employ a high-throughput small-molecule screening strategy to identify potent and selective inhibitors of an essential step in the biosynthesis of di-N-acetylbacillosamine (diNAcBAc), which is a highly modified saccharide that features as an essential building block in the cell-surface glycoconjugates of many Gram-negative pathogens. The current studies target the discovery of small molecule inhibitors of the enzyme PglD, which is an acetyl-CoA-dependent acetyl transferase that carries out the final step in the conversion of UDP-GlcNAc into UDP-diNAcBac in the N-linked protein glycosylation pathway of the enteropathogen Campylobacter jejuni. Phenotypic studies establish that UDP-diNAcBac is an obligatory intermediate in the pathway that ultimately affords bacterial cell-surface N-linked glycoproteins that are involved in host cell adhesion, invasion and colonization. Therefore, smal-molecule inhibitors that result from these studies would be incisive chemical tools for elucidating the fundamental roles of highly modified saccharides in microbial virulence and pathogenesis. Additionally, the probes would represent novel leads in the development of new therapeutic agents and validate a new class of antibiotic target. This research addresses the central hypothesis that the biosynthetic pathways in pathogenic bacteria that lead to highly modified sugar building blocks, such as di-N-acetyl-bacillosamine, represent an "Achilles' heel" that can be exploited in the battle against infectious diseases. The general principles that we develop in these studies will be applicable to other microbial pathogens that implement prokaryote- specific N- and O-linked glycoproteins as virulence factors. If successful, the research will identify new enzyme targets and strategies in the global crisis of combating infectious diseases in the face of escalating antibiotic resistance.
描述(由申请人提供):众所周知,抗生素耐药性是对抗微生物病原体的关键问题。不太为人所知的是解决耐药性发展的严重后果的抗菌治疗新方法的发展方向。在过去的十年中,细菌细胞表面糖复合物,包括外细胞壁的脂多糖(LPS)成分以及几种医学相关革兰氏阴性细菌病原体的细胞表面N-和O-连接糖蛋白,已在分子细节上进行了表征,并发现对于宿主依赖性毒力和致病性至关重要。我们建议采用高通量小分子筛选策略来鉴定二-N-乙酰基杆菌胺(diNAcBAc)生物合成中一个重要步骤的有效和选择性抑制剂,该步骤是一种高度修饰的糖,是生物合成中的重要组成部分。许多革兰氏阴性病原体的细胞表面糖缀合物。目前的研究目标是发现 PglD 酶的小分子抑制剂,PglD 是一种乙酰辅酶 A 依赖性乙酰转移酶,在 N 连接蛋白糖基化途径中执行 UDP-GlcNAc 转化为 UDP-diNAcBac 的最后一步肠道病原体空肠弯曲杆菌。表型研究表明,UDP-diNAcBac 是最终提供参与宿主细胞粘附、侵袭和定植的细菌细胞表面 N 连接糖蛋白的途径中的必需中间体。因此,这些研究产生的小分子抑制剂将成为阐明这一问题的精辟化学工具。 高度修饰的糖在微生物毒力和发病机制中的基本作用。此外,这些探针将代表新治疗药物开发的新线索,并验证一类新的抗生素靶点。这项研究提出了一个核心假设,即致病菌中产生高度修饰的糖结构单元(例如二-N-乙酰基-芽孢杆菌胺)的生物合成途径是可用于对抗传染病的“阿喀琉斯之踵”。我们在这些研究中开发的一般原则将适用于将原核生物特异性 N- 和 O- 连接糖蛋白作为毒力因子的其他微生物病原体。如果成功,该研究将在面临抗生素耐药性不断升级的全球抗击传染病危机中确定新的酶靶点和策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara Imperiali其他文献

Barbara Imperiali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara Imperiali', 18)}}的其他基金

Development and application of glycan readers for the detection and analysis of bacterial glycoconjugates
用于细菌糖复合物检测和分析的聚糖读数器的开发和应用
  • 批准号:
    9295172
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
Acquisition of Octet Biolayer Interferometry system for MIT biophysics facility
为麻省理工学院生物物理设施采购 Octet Biolayer 干涉测量系统
  • 批准号:
    8640541
  • 财政年份:
    2014
  • 资助金额:
    $ 4.01万
  • 项目类别:
PGT Inhibitors Mapped From a Tunicamycin Blueprint
根据衣霉素蓝图绘制的 PGT 抑制剂
  • 批准号:
    8508008
  • 财政年份:
    2013
  • 资助金额:
    $ 4.01万
  • 项目类别:
PGT Inhibitors Mapped From a Tunicamycin Blueprint
根据衣霉素蓝图绘制的 PGT 抑制剂
  • 批准号:
    8607890
  • 财政年份:
    2013
  • 资助金额:
    $ 4.01万
  • 项目类别:
Inhibition of Glycoprotein Biosynthesis in Gram-Negative Pathogens
革兰氏阴性病原体糖蛋白生物合成的抑制
  • 批准号:
    8420337
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:
Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    9004701
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:
Inhibition of prokaryote-specific saccharide biosynthesis in microbial pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    8235459
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:
Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    8757021
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:
Inhibition of Prokaryote-Specific Saccharide Biosynthesis in Microbial Pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    9265228
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:
Inhibition of prokaryote-specific saccharide biosynthesis in microbial pathogens
微生物病原体中原核生物特异性糖生物合成的抑制
  • 批准号:
    8446469
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:

相似国自然基金

核苷酸转移酶cGAS乙酰化修饰抑制剂的设计、合成及抗自身免疫性疾病的机制研究
  • 批准号:
    82273767
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
甾醇氧乙酰基转移酶(SOAT)在茯苓酸生物合成途径中的功能解析
  • 批准号:
    81872948
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
棉花GhACNAT基因调控花药发育的分子机理研究
  • 批准号:
    31671738
  • 批准年份:
    2016
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
乙酰转移酶p300对脂肪酸合成的调控机制及其在前列腺癌治疗中的意义
  • 批准号:
    81502190
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Alpha-亚麻酸改善高血压前期的血管胰岛素抵抗从而延缓血压升高及其机制
  • 批准号:
    81470537
  • 批准年份:
    2014
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating the role of CRAT as a driver of triple negative breast cancer chemoresistance
研究 CRAT 作为三阴性乳腺癌化疗耐药驱动因素的作用
  • 批准号:
    10536077
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
Protein acetylation-dependent fatty acid metabolic dysfunction in HFpEF
HFpEF 中蛋白质乙酰化依赖性脂肪酸代谢功能障碍
  • 批准号:
    10369549
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
Metabolic regulation and inhibition of ATP-citrate lyase
ATP-柠檬酸裂解酶的代谢调节和抑制
  • 批准号:
    10588229
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
Investigating the role of CRAT as a driver of triple negative breast cancer chemoresistance
研究 CRAT 作为三阴性乳腺癌化疗耐药驱动因素的作用
  • 批准号:
    10677609
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
Metabolic regulation and inhibition of ATP-citrate lyase
ATP-柠檬酸裂解酶的代谢调节和抑制
  • 批准号:
    10444160
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了