Identifying drug synergistic with cancer immunotherapy
确定药物与癌症免疫疗法的协同作用
基本信息
- 批准号:10266758
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAdvisory CommitteesAftercareAntibodiesAntigen PresentationAntineoplastic AgentsAreaArtificial IntelligenceAwardBRAF geneBiologicalBiological MarkersBiologyCD8B1 geneCancer PatientCell LineClinical DataClinical ResearchClinical TrialsClinical Trials DesignCloud ComputingCollaborationsCombined Modality TherapyComputational BiologyComputer softwareDataData CommonsDevelopment PlansDoctor of PhilosophyDrug CombinationsDrug usageEffectivenessEnvironmentFoundationsGoalsHumanImmuneImmune systemImmunologic FactorsImmunological ModelsImmunologyImmunology procedureImmunomodulatorsImmunooncologyImmunotherapyIn VitroInfiltrationInfrastructureInstitutesInvestigationInvestigational DrugsK-Series Research Career ProgramsKnowledgeLearningMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of urinary bladderMediatingMentorsMissionOutcomePatientsPerformancePharmaceutical PreparationsPhase I/II Clinical TrialPre-Clinical ModelPrizePsychological TransferRenal carcinomaResearchResearch PersonnelScienceTarget PopulationsTechniquesTechnologyTestingTrainingTraining ActivityTranslational ResearchTranslationsVaccinesWorkbasecancer cellcancer clinical trialcancer immunotherapycancer therapycancer typecareercareer developmentcohortcomputing resourcesdata accessdeep learningdesignimmune checkpoint blockersimmunoregulationimprovedin silicoin vivoindustry partnerinhibitor/antagonistinnovationlarge datasetsmelanomamethod developmentmouse modelnovelnovel therapeutic interventionpalliative chemotherapyprecision oncologypredicting responseprototyperesponseresponse biomarkerskillssmall moleculesoftware infrastructuresoundstatisticstranscriptometranscriptome sequencingtranscriptomicstreatment optimizationtumortumor immunologytumor-immune system interactions
项目摘要
PROJECT SUMMARY
Avinash D Sahu, Ph.D., is a computational biologist whose overarching career goal is to solve longstanding problems in
cancer immunology and translational precision oncology using artificial intelligence (AI) and to devise new therapeutic
strategies for late-stage cancer patients. Entitled Identifying drug synergistic with cancer immunotherapy, the proposed
research combines cutting-edge AI technology with Immuno-oncology (IO) to produce a systematic approach to
identifying drugs that synergize with immunotherapy, and prioritize them for clinical trials for advanced melanoma,
bladder, kidney, and lung cancer.
Career development plan: Dr. Sahu is a recipient of the Michelson Prize, and his research mission is to initiate precision
immuno-oncology by moving patients away from palliative chemotherapy to more personalized IO treatments. His
previous training in AI, statistics, method development, cancer, and translation biology have prepared him to conduct the
proposed research. Dr. Sahu has outlined specific training activities to expand his skill set in four areas: 1) cancer
immunology, 2) AI, 3) translation research and 4) new immunological assays. This skill set will be necessary to gain
research independence. Mentors/Environment: Dr. Sahu mentoring and the advisory team assembles world-leading
experts in computational biology, translation and clinical research, AI, statistics, and immunology. Also, Dr. Sahu has
developed academic collaborations and industry partners to provide him experimental support for the proposal.
Leveraging the state-of-art software and google-cloud infrastructure provided by Cancer Immune Data Commons (CIDC);
computational resources from DFCI, Harvard, and Broad Institute; as well as unique access to largest immunotherapy
patient data from collaborators, Dr. Sahu is uniquely placed to identify most promising IO drug combinations.
Research: There is a lack of a principled approach to identify promising IO drug combinations that has often led to
arbitrarily designed IO clinical trials without a sound biological basis. The proposal formulates the first in silico predictor
to estimate drug’s immunomodulatory effect and potential to synergize with immunotherapies. Aim 1 builds a novel deep
learning predictor —DeepImmune— to predict immunotherapy response from transcriptomes. Aim 2 estimates the
immunomodulatory effects of drugs from for its drug-induced transcriptomic changes using DeepImmune. Aim 3
prioritize top predicted immunomodulatory drugs and validate their effect in pre-clinical models.
Outcomes/Impact: The successful completion of the proposal will result in a robust predictor to rationally combine
cancer therapies with immunotherapy and set the basis for a clinical trial to test the most promising combination therapy.
The career development award and mentored research will enable Dr. Sahu to become a leader in the new field of research
at the intersection of precision immuno-oncology and AI.
项目概要
Avinash D Sahu 博士是一位计算生物学家,其首要职业目标是解决长期存在的问题
使用人工智能 (AI) 进行癌症免疫学和转化精准肿瘤学并设计新疗法
晚期癌症患者的策略,题为“识别药物与癌症免疫疗法的协同作用”,提出的建议。
研究将尖端人工智能技术与免疫肿瘤学 (IO) 相结合,产生一种系统方法
识别与免疫疗法具有协同作用的药物,并将其优先用于晚期黑色素瘤的临床试验,
膀胱癌、肾癌和肺癌。
职业发展规划:Sahu博士是迈克尔逊奖获得者,他的研究使命是开创精准
免疫肿瘤学,让患者从姑息化疗转向更个性化的 IO 治疗。
之前在人工智能、统计学、方法开发、癌症和翻译生物学方面的培训使他为开展这项研究做好了准备
Sahu 博士概述了在四个领域扩展其技能的具体培训活动:1) 癌症
免疫学、2) 人工智能、3) 翻译研究和 4) 新的免疫学测定是获得这些技能所必需的。
研究独立性。 导师/环境:Sahu 博士的指导和咨询团队汇集了世界领先的人才。
Sahu 博士是计算生物学、翻译和临床研究、人工智能、统计学和免疫学领域的专家。
发展了学术合作和行业合作伙伴,为他的提案提供实验支持。
利用癌症免疫数据共享 (CIDC) 提供的最先进的软件和谷歌云基础设施;
来自 DFCI、哈佛大学和布罗德研究所的计算资源以及获得最大免疫疗法的独特途径;
Sahu 博士通过合作者提供的患者数据,在识别最有希望的 IO 药物组合方面具有独特的优势。
研究:缺乏原则性方法来识别有前景的 IO 药物组合,这常常导致
任意设计的 IO 临床试验没有良好的生物学基础,该提案制定了第一个计算机预测因子。
目标 1 旨在评估药物的免疫调节作用以及与免疫疗法协同作用的潜力。
学习预测器——DeepImmune——通过转录组预测免疫治疗反应,目标 2 估计了
使用 DeepImmune Aim 3 分析药物引起的转录组变化的免疫调节作用。
优先考虑最受预测的免疫调节药物,并在临床前模型中验证其效果。
结果/影响:提案的成功完成将产生一个强大的预测器来合理地组合
癌症疗法与免疫疗法并为临床试验奠定了基础,以测试最有希望的联合疗法。
职业发展奖和指导研究将使 Sahu 博士成为新研究领域的领导者
精准免疫肿瘤学和人工智能的交叉点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avinash Das Sahu其他文献
Avinash Das Sahu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avinash Das Sahu', 18)}}的其他基金
Identifying drug synergistic with cancer immunotherapy
确定药物与癌症免疫疗法的协同作用
- 批准号:
10828594 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
相似海外基金
Personalized preclinical models in pancreas cancer: a tractable approach to precision medicine
胰腺癌的个性化临床前模型:一种易于处理的精准医疗方法
- 批准号:
10115679 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Personalized preclinical models in pancreas cancer: a tractable approach to precision medicine
胰腺癌的个性化临床前模型:一种易于处理的精准医疗方法
- 批准号:
10591500 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Identifying drug synergistic with cancer immunotherapy
确定药物与癌症免疫疗法的协同作用
- 批准号:
10828594 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Personalized preclinical models in pancreas cancer: a tractable approach to precision medicine
胰腺癌的个性化临床前模型:一种易于处理的精准医疗方法
- 批准号:
10372089 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别: