Stretchable electronic-bladder interface for neuroprosthetic control
用于神经假体控制的可拉伸电子膀胱接口
基本信息
- 批准号:8951115
- 负责人:
- 金额:$ 18.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAcuteAddressAdverse effectsAffectAgingAlgorithmsAmericanAnimalsAutomobile DrivingBladderBladder ControlBladder DysfunctionBladder neck obstructionCarbon NanotubesCaringCatheterizationCathetersChronicClinicalCollaborationsContractsDevelopmentDevicesDiabetes MellitusDimensionsEffectivenessElectric StimulationElectrodesElectronicsEtiologyEvaluationEventFundingFutureGenerationsGenital systemHealthcare SystemsHumanImplantImplantation procedureIncontinenceIndividualIndwelling CatheterInterventionLeadLower urinary tractMedicalMetalsMethodsMicrofabricationModificationMonitorMultiple SclerosisMuscleNerveNeurologicOrganOveractive BladderPatientsPatternPelvisPharmaceutical PreparationsPharmacologic SubstancePopulationPower SourcesPregnancy ComplicationsPreparationProcessProstateQuality of lifeResearchResistanceRiskSecondary toSpasmSpinal cord injurySpinal nerve root structureStretchingStrokeStructureSurfaceSystemTechniquesTechnologyTestingTimeTractionUrinary RetentionUrinary tract infectionUrinationVisceraWireless Technologyage effectbiomaterial compatibilitycohortdensitydesignfunctional restorationimprovedin vivointernal controlmigrationminimally invasivenervous system disorderneuroprosthesisneuroregulationnovelnovel strategiespolydimethylsiloxaneprototypepublic health relevanceradiofrequencyresearch studyresponsescale upsuccessurologic
项目摘要
DESCRIPTION (provided by applicant): Millions of individuals have partial or full loss of bladder control. This large population cohort is due to the wide variety of etiologies, from neurological disorders like spinal cord injury and multiple sclerosis to non- neurological deficits
like diabetes, pregnancy complications and the effects of aging. Typical medications and interventions like diapers and catheters provide limited benefit or are not well received. Neurostimulators have been developed to drive bladder nerves, however they do not provide fully effective bladder control. We propose an alternate neuroprosthetic approach that interfaces directly with the bladder, towards full closed- loop control. Through this proposal we will develop
a stretchable electrode grid that will be placed directly on the bladder exterior surface. Previous
research with electrodes on the bladder wall failed due to lead migration and current spread. We will use a novel substrate with stretchable stimulation contacts that maintains a tight fit to the bladder and uses current steering to optimize bladder recruitment, for effective micturition. Integrated within the electrode grid will be strain gauges that will detect the bladder state. In te ultimate implementation, this electrode grid will be wirelessly powered with an external or implanted power source and processing unit, which will also drive pudendal nerve branch stimulation for continence. The objective of this proposal is to develop the stretchable electrode grid, including determining an ideal size and layout for the stimulating electrodes and number and arrangement of the strain gauges to effectively detect bladder stretch. Across several design generations, wired prototypes will first be evaluated in ex vivo preparations followed by acute in vivo experiments. Finally, two four-week in vivo implants will be performed to evaluate the semi-chronic bladder response to the electrode grid. At the end of this proposed study we will have a robust electrode grid that can be scaled up for eventual human use and will have developed system specifications for an optimal wireless control system. Future studies will include implementation of and in vivo testing of a wireless electronics module on the electrode grid and integration of an external control module with pudendal nerve stimulator. Collaboration with clinicians will lead to development of a minimally invasive implant procedure and versatile algorithms for closed-loop control.
描述(由申请人提供):数以百万计的人部分或完全丧失膀胱控制,这是由于多种病因造成的,从脊髓损伤和多发性硬化症等神经系统疾病到非神经系统缺陷。
典型的药物和干预措施(如尿布和导尿管)的效果有限,或者尚未被广泛开发用于驱动膀胱神经,但它们不能提供完全有效的膀胱控制。通过这个提案,我们将开发一种直接与膀胱连接的替代神经假体方法,以实现完全闭环控制。
将直接放置在膀胱外表面的可拉伸电极网格。
由于导线迁移和电流扩散,在膀胱壁上使用电极的研究失败了,我们将使用一种具有可拉伸刺激触点的新型基板,该基板可与膀胱保持紧密贴合,并使用电流控制来优化膀胱募集,以实现有效的排尿。电极网格将是检测膀胱状态的应变计,在最终实施中,该电极网格将通过外部或植入的电源和处理单元进行无线供电,这也将驱动阴部神经分支刺激以达到节制的目的。这个提议的目标是开发可拉伸电极网格,包括确定刺激电极的理想尺寸和布局以及应变计的数量和排列,以有效检测膀胱拉伸。在几代设计中,首先将在体外准备过程中对有线原型进行评估,然后进行评估。最后,将进行两次为期四周的体内植入,以评估膀胱对电极网格的反应。在这项拟议研究结束时,我们将拥有一个可以按比例放大的坚固的电极网格。最终人类使用并将制定系统规范未来的研究将包括在电极网格上实施和体内测试无线电子模块,以及将外部控制模块与阴部神经刺激器集成,从而开发出微创植入物。用于闭环控制的程序和通用算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy M. Bruns其他文献
Timothy M. Bruns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy M. Bruns', 18)}}的其他基金
Pudendal nerve mapping towards improved neuromodulation for urinary retention
阴部神经映射以改善尿潴留的神经调节
- 批准号:
10213889 - 财政年份:2019
- 资助金额:
$ 18.4万 - 项目类别:
Pudendal nerve mapping towards improved neuromodulation for urinary retention
阴部神经映射以改善尿潴留的神经调节
- 批准号:
9807652 - 财政年份:2019
- 资助金额:
$ 18.4万 - 项目类别:
Pudendal nerve mapping towards improved neuromodulation for urinary retention
阴部神经映射以改善尿潴留的神经调节
- 批准号:
10451153 - 财政年份:2019
- 资助金额:
$ 18.4万 - 项目类别:
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
- 批准号:
9900908 - 财政年份:2017
- 资助金额:
$ 18.4万 - 项目类别:
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
- 批准号:
9415137 - 财政年份:2017
- 资助金额:
$ 18.4万 - 项目类别:
Stretchable electronic-bladder interface for neuroprosthetic control
用于神经假体控制的可拉伸电子膀胱接口
- 批准号:
9093798 - 财政年份:2015
- 资助金额:
$ 18.4万 - 项目类别:
Development of a novel multi-modal spinal root interface
新型多模式脊柱根接口的开发
- 批准号:
9529461 - 财政年份:2015
- 资助金额:
$ 18.4万 - 项目类别:
Neuroprosthesis development utilizing afferent neural activity recorded with non-
利用非记录的传入神经活动开发神经假体
- 批准号:
8202006 - 财政年份:2011
- 资助金额:
$ 18.4万 - 项目类别:
Neuroprosthesis development utilizing afferent neural activity recorded with non-
利用非记录的传入神经活动开发神经假体
- 批准号:
8324058 - 财政年份:2011
- 资助金额:
$ 18.4万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Development of a Novel Animal Model for Spinal Cord Injury with Sepsis
脓毒症脊髓损伤新型动物模型的开发
- 批准号:
10665862 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别: