Neuroprosthesis development utilizing afferent neural activity recorded with non-

利用非记录的传入神经活动开发神经假体

基本信息

项目摘要

DESCRIPTION (provided by applicant): The goal of this work is the development of a practical, non-penetrating somatosensory neural interface at the level of the dorsal root ganglia (DRG), for use as sensory feedback. The DRG is an ideal location to record somatosensory neural signals which convey body-state information such as tactile and proprioceptive feedback from the limbs. These signals can be used as control signals in closed loop functional electrical stimulation (FES) applications in which the position of a limb is decoded and used to regulate the FES system to adapt to fatigue or the addition of a load or to perform complex, multi-joint movements smoothly. Internal neural interface sensors, such as these may be minimally obtrusive and integrate easily with implanted neuroprostheses while not requiring the large number of sensors or regular donning and calibration that external sensors do. Our lab has shown the ability to decode limb position with high accuracy from recordings of primary afferent neural activity with penetrating microelectrodes inserted in lumbar DRG, and has applied these signals as feedback within closed-loop FES control of the lower limb. However, the efficacy of long-term recordings from these penetrating electrodes has yet to be established, and recordings with penetrating electrodes in humans are challenging to obtain. We hypothesize that recordings from the surface of the DRG may be sufficient for extracting detailed information about limb position and may provide a more practical route for clinical evaluations. Unlike other neural structures, cell bodies are packed closely under the DRG perineum, making it an ideal candidate for obtaining activity from individual cells without using penetrating electrodes. Also, this surface approach may have a higher efficacy in long-term recordings, due to a reduced tissue response, than penetrating electrodes. Recently we showed that recordings from the surface of the DRG, with non-penetrating electrodes, can yield neural signals that can be used to predict the state of the limb, in animal studies. We will evaluate two specific aims in the research planned in this study. Aim 1: In animal experiments, we will evaluate the ability of neural recordings from non-penetrating electrodes on the L6 and L7 DRG to provide functional closed loop control of FES controlled lower limb stepping movements. This study will establish the utility of this approach, by indicating whether a sufficient range of neural activity can be recorded from, to obtain feedback towards functional limb movements. Aim 2: In intraoperative human experiments, we will evaluate the ability of non-penetrating electrodes placed on the surface of exposed DRG to record neural activity that predicts mechanical and vibratory stimulation applied to the lower leg. This study will obtain the first recordings from DRG in humans and demonstrate that we are able to decode human DRG activity. Success in this proposed work will be an important advance towards development of closed-loop neuroprostheses based on this non-penetrating DRG approach and will drive future studies on extended duration animal and human recordings using optimized electrodes.
描述(由申请人提供): 这项工作的目标是在背根神经节(DRG)水平开发一种实用的、非穿透性的体感神经接口,用作感觉反馈。 DRG 是记录体感神经信号的理想位置,体感神经信号传达身体状态信息,例如来自四肢的触觉和本体感觉反馈。这些信号可用作闭环功能性电刺激 (FES) 应用中的控制信号,其中肢体的位置被解码并用于调节 FES 系统以适应疲劳或增加负载或执行复杂的多任务。 -关节活动顺畅。诸如此类的内部神经接口传感器可能不太显眼,并且可以轻松地与植入的神经假体集成,同时不需要外部传感器那样的大量传感器或定期佩戴和校准。我们的实验室已经展示了通过插入腰椎 DRG 中的穿透微电极记录初级传入神经活动来高精度解码肢体位置的能力,并将这些信号作为下肢闭环 FES 控制中的反馈。然而,这些穿透电极的长期记录的功效尚未确定,并且在人体中使用穿透电极进行记录也具有挑战性。我们假设来自 DRG 表面的记录可能足以提取有关肢体位置的详细信息,并且可能为临床评估提供更实用的途径。与其他神经结构不同,细胞体紧密排列在 DRG 会阴下方,使其成为在不使用穿透电极的情况下从单个细胞获取活动的理想候选者。此外,由于组织反应减少,这种表面方法在长期记录中可能比穿透电极具有更高的功效。最近,我们在动物研究中表明,使用非穿透性电极从 DRG 表面进行记录可以产生可用于预测肢体状态的神经信号。我们将评估本研究计划的研究的两个具体目标。目标 1:在动物实验中,我们将评估 L6 和 L7 DRG 上非穿透性电极的神经记录为 FES 控制的下肢步进运动提供功能性闭环控制的能力。这项研究将通过表明是否可以记录足够范围的神经活动来获得对功能性肢体运动的反馈来确定这种方法的实用性。目标 2:在术中人体实验中,我们将评估放置在暴露的 DRG 表面的非穿透性电极记录神经活动的能力,从而预测施加到小腿的机械和振动刺激。这项研究将获得人类 DRG 的第一个记录,并证明我们能够解码人类 DRG 活动。这项拟议工作的成功将是基于这种非穿透性 DRG 方法的闭环神经假体开发的重要进步,并将推动未来使用优化电极进行长时间动物和人类记录的研究。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy M. Bruns其他文献

Timothy M. Bruns的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy M. Bruns', 18)}}的其他基金

Pudendal nerve mapping towards improved neuromodulation for urinary retention
阴部神经映射以改善尿潴留的神经调节
  • 批准号:
    10213889
  • 财政年份:
    2019
  • 资助金额:
    $ 5.18万
  • 项目类别:
Pudendal nerve mapping towards improved neuromodulation for urinary retention
阴部神经映射以改善尿潴留的神经调节
  • 批准号:
    9807652
  • 财政年份:
    2019
  • 资助金额:
    $ 5.18万
  • 项目类别:
Pudendal nerve mapping towards improved neuromodulation for urinary retention
阴部神经映射以改善尿潴留的神经调节
  • 批准号:
    10451153
  • 财政年份:
    2019
  • 资助金额:
    $ 5.18万
  • 项目类别:
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
  • 批准号:
    9900908
  • 财政年份:
    2017
  • 资助金额:
    $ 5.18万
  • 项目类别:
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
  • 批准号:
    9415137
  • 财政年份:
    2017
  • 资助金额:
    $ 5.18万
  • 项目类别:
Stretchable electronic-bladder interface for neuroprosthetic control
用于神经假体控制的可拉伸电子膀胱接口
  • 批准号:
    9093798
  • 财政年份:
    2015
  • 资助金额:
    $ 5.18万
  • 项目类别:
Development of a novel multi-modal spinal root interface
新型多模式脊柱根接口的开发
  • 批准号:
    9529461
  • 财政年份:
    2015
  • 资助金额:
    $ 5.18万
  • 项目类别:
Stretchable electronic-bladder interface for neuroprosthetic control
用于神经假体控制的可拉伸电子膀胱接口
  • 批准号:
    8951115
  • 财政年份:
    2015
  • 资助金额:
    $ 5.18万
  • 项目类别:
Neuroprosthesis development utilizing afferent neural activity recorded with non-
利用非记录的传入神经活动开发神经假体
  • 批准号:
    8202006
  • 财政年份:
    2011
  • 资助金额:
    $ 5.18万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms of Trypsin Activation in Pancreatitis
胰腺炎中胰蛋白酶激活的机制
  • 批准号:
    10587286
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
ShEEP Request for A Namocell PALA Single CellDispenser
ShEEP 请求 Namocell PALA 单细胞分配器
  • 批准号:
    10739131
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Research Core
研究核心
  • 批准号:
    10403254
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
The role of beta agonists in the treatment of chronic kidney disease
β受体激动剂在慢性肾脏病治疗中的作用
  • 批准号:
    10485842
  • 财政年份:
    2022
  • 资助金额:
    $ 5.18万
  • 项目类别:
Ceramides as novel drivers of metabolic dysfunction and colorectal cancer
神经酰胺作为代谢功能障碍和结直肠癌的新驱动因素
  • 批准号:
    10696086
  • 财政年份:
    2022
  • 资助金额:
    $ 5.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了