Operationalizing Behavioral Theory for mHealth: Dynamics, Context, and Personalization
移动医疗行为理论的实施:动态、情境和个性化
基本信息
- 批准号:10244991
- 负责人:
- 金额:$ 50.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-19 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAlcoholsAlgorithmsAreaBayesian ModelingBayesian NetworkBehaviorBehavior TherapyBehavioralBehavioral ModelBehavioral SciencesBiological ModelsCalendarCardiovascular DiseasesCardiovascular systemCellular PhoneCessation of lifeChronicChronic DiseaseCognitionComplexComputer ModelsCuesDataDevelopmentDiabetes MellitusEffectivenessEnvironmentExpectancyFoundationsFundingGoalsHealth TechnologyHealth behaviorHealth behavior changeHealthcareHumanIndividualInterventionLocationMalignant NeoplasmsMeasurementMeasuresModelingNon-Insulin-Dependent Diabetes MellitusObesityOutcomeOverweightPatient Self-ReportPatientsPhysical activityPopulationProcessPublic HealthRandomizedResearchSample SizeSelf EfficacySeriesShapesSourceStatistical ModelsStressStructureTechnologyTestingTimeTobacco useUncertaintyUnhealthy DietUnited States National Institutes of HealthWalkingWeatherWorkadaptive interventionadult obesitybasebehavior changecausal modelcohortcontextual factorsdesigndigitaldynamic systemeffective interventionefficacy outcomesfallsflexibilityimprovedmHealthmobile computingmultiscale datanovelphysical inactivityrandomized trialresearch and developmentresponsesedentarysedentary lifestylesocial cognitive theorysoundtheoriestherapy designtoolwearable sensor technology
项目摘要
Unhealthy behaviors contribute to the majority of chronic diseases, which account for 86% of all healthcare
spending in the US. Despite a great deal of research, the development of behavior change interventions that
are effective, scalable, and sustainable remains challenging. Recent advances in mobile sensing and
smartphone-based technologies have led to a novel and promising form of intervention, called a “Just-in-time,
adaptive intervention” (JITAI), which has the potential to continuously adapt to changing contexts and
personalize to individual needs and opportunities for behavior change. Although interventions have been
shown to be more effective when based on sound theory, current behavioral theories lack the temporal
granularity and multiscale dynamic structure needed for developing effective JITAIs based on measurements
of complex dynamic behaviors and contexts. Simultaneously, there is a lack of modeling frameworks that can
express dynamic, temporally multiscale theories and represent dynamic, temporally multiscale data. This
project will address the theory-development, measurement, and modeling challenges and opportunities
presented by intensively collected longitudinal data, with a focus on physical activity and sedentary behavior,
and broad implications for other behaviors. For efficiency, we build on the NIH-funded year-long micro-
randomized trial (MRT) of HeartSteps (n=60), an adaptive mHealth intervention based on Social-Cognitive
Theory (SCT) developed to increase walking and decrease sedentary behavior in patients with cardiovascular
disease. The aims of this new proposal are: 1) Refine and develop dynamic measures of theoretical constructs
that influence our target behaviors, 2) Enhance HeartSteps with the measures developed in Aim 1 and collect
data from two additional year-long HeartSteps cohorts (sedentary overweight/obese adults (n=60) and type 2
diabetes patients (n=60), total n=180), 3) Develop a modeling framework to operationalize dynamic and
contextualized theories of behavior in an intervention setting, and 4) Improve prediction of SCT outcomes
using increasingly complex models. The work proposed here will provide new digital, data driven measures of
key behavioral theory constructs at the momentary, daily, and weekly time scales, provide new tools tailored
for the specification of complex models of behavioral dynamics, as well as new model estimation tools tailored
specifically to the complex, longitudinal, multi-time scale behavioral and contextual data that are now
accessible using mHealth technologies. Finally, we will leverage the collected data and the proposed modeling
tools to develop and test enhanced, dynamic extensions of social cognitive theory operationalized as fully
quantified, predictive dynamical models. Collectively, this work will provide the theoretical foundations and
tools needed to significantly increase the effectiveness of physical activity-based mobile health interventions
over multiple time scales, including their ability to effectively support behavior change over longer time scales.
!
不健康的行为导致大多数慢性病,占所有医疗保健的 86%
尽管进行了大量研究,但行为改变干预措施的发展
移动传感和应用领域的最新进展仍然具有挑战性。
基于智能手机的技术催生了一种新颖且有前途的干预形式,称为“即时、
适应性干预”(JITAI),它有潜力不断适应不断变化的环境和
尽管已经采取了干预措施,但仍应根据个人需求和行为改变机会进行个性化调整。
当基于合理的理论时,当前的行为理论被证明更有效,但缺乏时间性
基于测量开发有效的 JITAI 所需的粒度和多尺度动态结构
同时,缺乏可以进行复杂动态行为和上下文的建模框架。
表达动态、时间多尺度理论并表示动态、时间多尺度数据。
项目将解决理论发展、测量和建模的挑战和机遇
由集中收集的纵向数据呈现,重点关注身体活动和久坐行为,
为了提高效率,我们以 NIH 资助的为期一年的微观研究为基础。
HeartSteps 的随机试验 (MRT) (n=60),一种基于社会认知的适应性移动健康干预措施
理论 (SCT) 的发展旨在增加心血管疾病患者的步行次数并减少久坐行为
这项新提案的目标是:1)完善和开发理论构建的动态措施。
影响我们的目标行为,2) 通过目标 1 中制定的措施增强 HeartSteps 并收集
来自另外两个为期一年的 HeartSteps 队列的数据(久坐的超重/肥胖成年人 (n=60) 和 2 型
糖尿病患者(n = 60),总数 n = 180),3)开发一个建模框架来操作动态和
干预环境下的行为情境理论,以及 4) 改进 SCT 结果的预测
这里提出的工作将提供新的数字化、数据驱动的测量方法。
在瞬间、每日和每周时间尺度构建关键行为理论,提供量身定制的新工具
用于规范行为动力学的复杂模型,以及定制的新模型估计工具
特别是现在复杂的、纵向的、多时间尺度的行为和情境数据
最后,我们将利用收集的数据和建议的模型。
开发和测试社会认知理论的增强的、动态的扩展的工具,充分运作
总的来说,这项工作将提供理论基础和预测动力模型。
显着提高基于身体活动的移动健康干预措施的有效性所需的工具
在多个时间尺度上,包括它们在较长时间尺度上有效支持行为改变的能力。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arie Kapteyn其他文献
Arie Kapteyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arie Kapteyn', 18)}}的其他基金
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10192630 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10663917 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10004553 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10468721 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10192630 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Early Life Conditions, Work, Psychological Wellbeing, Cognition and Dementia Risk
早期生活状况、工作、心理健康、认知和痴呆风险
- 批准号:
10663917 - 财政年份:2019
- 资助金额:
$ 50.45万 - 项目类别:
Toward Next Generation Data on Health and Life Changes at Older Ages
获取有关老年人健康和生活变化的下一代数据
- 批准号:
10670598 - 财政年份:2017
- 资助金额:
$ 50.45万 - 项目类别:
Toward Next Generation Data on Health and Life Changes at Older Ages
获取有关老年人健康和生活变化的下一代数据
- 批准号:
10216156 - 财政年份:2017
- 资助金额:
$ 50.45万 - 项目类别:
Toward Next Generation Data on Health and Life Changes at Older Ages
获取有关老年人健康和生活变化的下一代数据
- 批准号:
9925488 - 财政年份:2017
- 资助金额:
$ 50.45万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 50.45万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 50.45万 - 项目类别: