A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
基本信息
- 批准号:10244882
- 负责人:
- 金额:$ 33.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnecdotesAppearanceAreaBiologicalBrainBrain DiseasesBrain regionCell NucleusCellsCommunitiesComputer Vision SystemsComputer softwareComputing MethodologiesConsumptionDataDevelopmentEnvironmentEvaluationFluorescence MicroscopyGeneticGenetic TranscriptionGenotypeGoldHumanImageIndividualInstitutesInterventionKnock-outLabelLeadLearningLightLinkManualsMapsMethodsMicroscopyModelingMusNeurosciencesNeurosciences ResearchNoiseNuclearPerformanceProcessProtocols documentationPsychological TransferReproducibilityResolutionSamplingScienceScientistShapesSliceSource CodeStainsStructureTechniquesTechnologyTimeTissuesTrainingType I DNA TopoisomerasesVisualVisualizationWorkannotation systemautism spectrum disorderbasebioimagingbrain tissuecell typecitizen sciencecloud basedcomputerized toolscontrast imagingconvolutional neural networkcrowdsourcingdeep learningdesignfetalflexibilityhigh resolution imagingimprovedmicroscopic imagingnext generationnovelprogramsstem cellsstereoscopicsuccessthree dimensional structuretissue processingtooltwo-dimensionaluser-friendlyvirtual realityvolunteer
项目摘要
Abstract
The ability of accurate localize and characterize cells in light sheet fluorescence microscopy (LSFM) image is
indispensable for shedding new light on the understanding of three dimensional structures of the whole brain. In
our previous work, we have successfully developed a 2D nuclear segmentation method for the nuclear cleared
microscopy images using deep learning techniques. Although the convolutional neural networks show promise
in segmenting cells in LSFM images, our previous work is confined in 2D segmentation scenario and suffers
from the limited number of annotated data. In this project, we aim to develop a high throughput 3D cell
segmentation engine, with the focus on improving the segmentation accuracy and generality. First, we will
develop a cloud based semi-automatic annotation platform using the strength of virtual reality (VR) and crowd
sourcing. The user-friendly annotation environment and stereoscopic view in VR can significantly improve the
efficiency of manual annotation. We design a semi-automatic annotation workflow to largely reduce human
intervention, and thus improve both the accuracy and the replicability of annotation across different users.
Enlightened by the spirit of citizen science, we will extend the annotation software into a crowd sourcing platform
which allows us to obtain a massive number of manual annotations in short time. Second, we will develop a fully
3D cell segmentation engine using 3D convolutional neural networks trained with the 3D annotated samples.
Since it is often difficult to acquire isotropic LSFM images, we will further develop a super resolution method to
impute a high resolution image to facilitate the 3D cell segmentation. Third, we will develop a transfer learning
framework to make our 3D cell segmentation engine general enough to the application of novel LSFM data which
might have significant gap of image appearance due to different imaging setup or clearing/staining protocol. This
general framework will allow us to rapidly develop a specific cell segmentation solution for new LSFM data with
very few or even no manual annotations, by transferring the existing 3D segmentation engine that has been
trained with a sufficient number of annotated samples. Fourth, we will apply our computational tools to several
pilot neuroscience studies: (1) Investigating how topoisomerase I (one of the autism linked transcriptional
regulators) regulates brain structure, and (2) Investigating genetic influence on cell types in the developing
human brain by quantifying the number of progenitor cells in fetal cortical tissue. Successful carrying out our
project will have wide-reaching impact in neuroscience community in visualizing and analyzing complete cellular
resolution maps of individual cell types within healthy and disease brain. The improved cell segmentation engine
in 3D allows scientists from all over the world to share and process each other’s data accurately and efficiently,
thus increasing reproducibility and power.
抽象的
在光片荧光显微镜 (LSFM) 图像中准确定位和表征细胞的能力是
对于理解整个大脑的三维结构来说是必不可少的。
我们之前的工作中,我们已经成功开发了一种用于核清除的二维核分割方法
尽管卷积神经网络显示出前景,但使用深度学习技术的显微镜图像。
在LSFM图像中的细胞分割中,我们之前的工作仅限于2D分割场景并受到影响
在这个项目中,我们的目标是开发一种高通量的 3D 细胞。
分割引擎,重点是提高分割的准确性和通用性。首先,我们将。
利用虚拟现实(VR)和人群的力量开发基于云的半自动注释平台
VR 中用户友好的注释环境和立体视图可以显着改善。
我们设计了半自动标注工作流程,大大减少了人工标注的效率。
干预,从而提高不同用户之间注释的准确性和可复制性。
在公民科学精神的启发下,我们将注释软件延伸为众包平台
这使得我们能够在短时间内获得大量的手动注释。 其次,我们将开发一个完整的注释。
使用 3D 卷积神经网络的 3D 细胞分割引擎,通过 3D 带注释的样本进行训练。
由于获取各向同性LSFM图像通常很困难,我们将进一步开发一种超分辨率方法来
估算高分辨率图像以促进 3D 细胞分割第三,我们将开发迁移学习。
框架使我们的 3D 细胞分割引擎足够通用,能够应用新颖的 LSFM 数据
由于不同的成像设置或清除/染色方案,图像外观可能存在显着差异。
通用框架将使我们能够快速开发针对新 LSFM 数据的特定细胞分割解决方案
通过移植现有的3D分割引擎,很少甚至不需要手动注释
第四,我们将把我们的计算工具应用于几个。
试点神经科学研究:(1) 研究拓扑异构酶 I(自闭症相关转录因子之一)如何
调节器)调节大脑结构,以及(2)研究遗传对发育中细胞类型的影响
通过量化胎儿皮质组织中的祖细胞数量,我们成功地进行了人脑研究。
该项目将在可视化和分析完整细胞方面对神经科学界产生广泛影响
健康和患病大脑中单个细胞类型的分辨率图。改进的细胞分割引擎。
in 3D 允许来自世界各地的科学家准确有效地共享和处理彼此的数据,
从而提高再现性和功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guorong Wu其他文献
Guorong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guorong Wu', 18)}}的其他基金
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
- 批准号:
10288783 - 财政年份:2021
- 资助金额:
$ 33.51万 - 项目类别:
Continuing Tool Development for Longitudinal Network Analysis: Enriching the Diagnostic Power of Disease-Specific Connectomic Biomarkers by Deep Graph Learning
纵向网络分析的持续工具开发:通过深度图学习丰富疾病特异性连接组生物标志物的诊断能力
- 批准号:
10359157 - 财政年份:2021
- 资助金额:
$ 33.51万 - 项目类别:
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
- 批准号:
10461847 - 财政年份:2021
- 资助金额:
$ 33.51万 - 项目类别:
Understanding Selectivity Mechanisms of Network Vulnerability and Resilience in Alzheimer's Disease by Establishing a Neurobiological Basis through Network Neuroscience
通过网络神经科学建立神经生物学基础,了解阿尔茨海默氏病网络脆弱性和恢复力的选择性机制
- 批准号:
10033069 - 财政年份:2020
- 资助金额:
$ 33.51万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10370398 - 财政年份:2019
- 资助金额:
$ 33.51万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10582669 - 财政年份:2019
- 资助金额:
$ 33.51万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10463036 - 财政年份:2019
- 资助金额:
$ 33.51万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
9923760 - 财政年份:2019
- 资助金额:
$ 33.51万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 33.51万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 33.51万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 33.51万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 33.51万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 33.51万 - 项目类别: