Integration of Experience-Induced Gene Expression and Circuit Functions
经验诱导的基因表达和电路功能的整合
基本信息
- 批准号:10132411
- 负责人:
- 金额:$ 40.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmygdaloid structureAttentionBasic ScienceBehaviorBehavioralBehavioral ParadigmBinding ProteinsBrainBrain regionCellsChromatinCognitionComplexComputer ModelsComputing MethodologiesDataDiseaseEnvironmentFeedbackFrequenciesGene ExpressionGene Expression ProfilingGenesGeneticGenetic RecombinationHippocampus (Brain)HybridsImageInformation NetworksInterneuron functionInterneuronsLeadLinkMachine LearningMediatingMethodologyMolecularMolecular ProbesNeuronal PlasticityNeuronsNeurosciencesParvalbuminsPathway AnalysisPharmacologyPhysiologyPlayPopulationPrefrontal CortexPropertyPyramidal CellsRegulationRegulator GenesResearch PersonnelRoleRunningSensoryShapesShort-Term MemorySynapsesSystemSystems BiologyTechniquesTechnologyTestingUniversitiesWisconsinWorkelectrical propertyenvironmental enrichment for laboratory animalsexperienceexperimental studyfrontal lobeimmunoreactivityinnovationinterdisciplinary approachneural circuitneural networkneurodevelopmentneuronal circuitryneuronal excitabilityneurophysiologynovelnovel strategiespatch clamprabies viral tracingrelating to nervous systemresponsesensortranscriptometranslatomevoltage
项目摘要
Multi-PI: Xinyu Zhao, Meyer Jackson, University of Wisconsin-Madison.
Title: Integration of Experience-Induced Gene Expression and Circuit Functions
Understanding the complex relationships between cells, gene networks, neural circuits, and behavior requires
techniques that can probe the molecular makeup of distinct types of neurons, evaluate their properties, and test
their roles in higher level functions. Genes expressed within specific populations of neurons determine their
electrical properties and these properties together with their synaptic connectivity collectively shape the electrical
activity of neural circuits. This is especially well illustrated by a population of neurons defined by expression of
the Ca2+ binding protein parvalbumin (PV). PV interneurons (PVIs) are sparsely distributed, fast-spiking cells that
provide feedback and feedforward inhibition to principal neurons. One of the most well-defined network functions
of PVIs is in the coordination of neuronal networks and their associated oscillations. PVIs entrain cortical
networks to drive gamma oscillations (30-100 Hz) and control their frequency and strength. PVI-mediated
gamma oscillations are known to have important roles in sensory processing, attention, working memory, and
cognition. However, the gene networks that control PVI functions and their impact on gamma oscillations remain
unclear. PVIs are readily modified by environmental conditions and experience. PV immunoreactivity increases
after exploration of a novel environment, rearing under environmental enrichment (EE), and voluntary running
(VR). These changes occur in brain regions associated with cognition, including hippocampus, prefrontal cortex,
and amygdala. The molecular mechanisms underlying PVI changes during behavioral adaptation remain
unknown. Although studies suggest that behavioral adaptions affect gamma oscillations, a role for PVIs in the
link between behavioral adaption and gamma oscillations has not been established. This application takes a
multidisciplinary approach to address the fundamental question of how PVIs contribute to behavioral adaptations.
Our overarching hypothesis is that changes in gene expression that modify the cellular properties of PVIs will
alter network oscillations, enabling PVIs to serve as a critical hub in behavioral adaptations. We will determine
whether behavioral adaptation mobilizes networks of genes in PVIs, and assess the contributions of these
networks to PVI physiology and gamma oscillations. This project combines the unique expertise of co-PIs Zhao
(genetic regulation of neurodevelopment) and Jackson (neurophysiology and neural circuits) and co-Is Roy
(system biology and machine learning) and Rosenberg (computational and system neuroscience). By integrating
experimental data with gene network analysis and computational modeling of multicellular networks, this work
will reveal how changes in molecular/cellular properties impact the emergent properties of neural circuits.
多位 PI:Xinyu Zhu、Meyer Jackson,威斯康星大学麦迪逊分校。
标题:经验诱导的基因表达和电路功能的整合
了解细胞、基因网络、神经回路和行为之间的复杂关系需要
可以探测不同类型神经元的分子组成、评估其特性并测试的技术
他们在更高级别职能中的作用。特定神经元群体中表达的基因决定了它们的
电特性以及这些特性及其突触连接共同塑造了电特性
神经回路的活动。一组由表达定义的神经元很好地说明了这一点
Ca2+ 结合蛋白小清蛋白 (PV)。 PV 中间神经元 (PVI) 是稀疏分布、快速放电的细胞,
向主要神经元提供反馈和前馈抑制。定义最明确的网络功能之一
PVI 的作用在于神经元网络及其相关振荡的协调。 PVI 夹带皮质
网络驱动伽马振荡(30-100 Hz)并控制其频率和强度。 PVI介导的
众所周知,伽马振荡在感觉处理、注意力、工作记忆和
认识。然而,控制 PVI 功能及其对伽马振荡影响的基因网络仍然存在
不清楚。 PVI 很容易受到环境条件和经验的影响。 PV 免疫反应性增加
经过对新环境的探索、环境丰富(EE)的培养以及自愿跑步
(虚拟现实)。这些变化发生在与认知相关的大脑区域,包括海马体、前额皮质、
和杏仁核。行为适应过程中 PVI 变化的分子机制仍然存在
未知。尽管研究表明行为适应会影响伽马振荡,但 PVI 在
行为适应和伽马振荡之间的联系尚未建立。该应用程序需要一个
多学科方法来解决 PVI 如何促进行为适应这一基本问题。
我们的首要假设是,改变 PVI 细胞特性的基因表达变化将
改变网络振荡,使 PVI 成为行为适应的关键枢纽。我们将确定
行为适应是否调动 PVI 中的基因网络,并评估这些基因的贡献
PVI 生理学和伽马振荡网络。该项目结合了联合 PI 赵的独特专业知识
(神经发育的遗传调控)和杰克逊(神经生理学和神经回路)和罗伊共同
(系统生物学和机器学习)和罗森伯格(计算和系统神经科学)。通过整合
实验数据与基因网络分析和多细胞网络计算建模,这项工作
将揭示分子/细胞特性的变化如何影响神经回路的新兴特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MEYER B. JACKSON其他文献
MEYER B. JACKSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MEYER B. JACKSON', 18)}}的其他基金
Fusion pores in endocrine and synaptic exocytosis
内分泌和突触胞吐作用中的融合孔
- 批准号:
10449673 - 财政年份:2022
- 资助金额:
$ 40.37万 - 项目类别:
Fusion pores in endocrine and synaptic exocytosis
内分泌和突触胞吐作用中的融合孔
- 批准号:
10615868 - 财政年份:2022
- 资助金额:
$ 40.37万 - 项目类别:
Integration of Experience-Induced Gene Expression and Circuit Functions
经验诱导的基因表达和电路功能的整合
- 批准号:
10404503 - 财政年份:2018
- 资助金额:
$ 40.37万 - 项目类别:
Integration of Experience-Induced Gene Expression and Circuit Functions
经验诱导的基因表达和电路功能的整合
- 批准号:
9897551 - 财政年份:2018
- 资助金额:
$ 40.37万 - 项目类别:
Ca2+ buffering in the regulation of secretion from peptidergic nerve terminals
肽能神经末梢分泌调节中的 Ca2 缓冲
- 批准号:
10000213 - 财政年份:2017
- 资助金额:
$ 40.37万 - 项目类别:
Ca2+ buffering in the regulation of secretion from peptidergic nerve terminals
肽能神经末梢分泌调节中的 Ca2 缓冲
- 批准号:
10240521 - 财政年份:2017
- 资助金额:
$ 40.37万 - 项目类别:
Circuit Mechanisms of Information Processing and Storage in Brain Slices
脑切片信息处理和存储的电路机制
- 批准号:
9320901 - 财政年份:2015
- 资助金额:
$ 40.37万 - 项目类别:
Transgenic Mice for Hybrid Voltage Sensor Imaging of Neural Circuitry
用于神经回路混合电压传感器成像的转基因小鼠
- 批准号:
8675971 - 财政年份:2013
- 资助金额:
$ 40.37万 - 项目类别:
Summer research experience for undergraduates in neuroscience
神经科学本科生暑期研究经历
- 批准号:
8794487 - 财政年份:2013
- 资助金额:
$ 40.37万 - 项目类别:
Transgenic Mice for Hybrid Voltage Sensor Imaging of Neural Circuitry
用于神经回路混合电压传感器成像的转基因小鼠
- 批准号:
8444176 - 财政年份:2013
- 资助金额:
$ 40.37万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 40.37万 - 项目类别:
Role of synaptic density in mediating the relation between social disconnection and late-life suicide risk
突触密度在调节社会脱节与晚年自杀风险之间关系中的作用
- 批准号:
10598338 - 财政年份:2023
- 资助金额:
$ 40.37万 - 项目类别:
Impact of fentanyl dependence on a parabrachio-amygdalar opioid circuit
芬太尼依赖对臂旁杏仁核阿片类药物回路的影响
- 批准号:
10604569 - 财政年份:2023
- 资助金额:
$ 40.37万 - 项目类别:
Neural processing of status signals in social hierarchies
社会等级中状态信号的神经处理
- 批准号:
10646570 - 财政年份:2023
- 资助金额:
$ 40.37万 - 项目类别:
Towards the identification of a mesoscale neural systems logic underlying innate behaviors
识别先天行为背后的中尺度神经系统逻辑
- 批准号:
10734660 - 财政年份:2023
- 资助金额:
$ 40.37万 - 项目类别: