Redefining Clinical Viscosity in Sickle Cell Diseaseby Leveraging Microfluidic Technologies
利用微流体技术重新定义镰状细胞病的临床粘度
基本信息
- 批准号:10022309
- 负责人:
- 金额:$ 73.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAnimal ModelArchitectureBiochemicalBiologic CharacteristicBiologicalBiological FactorsBiophysicsBloodBlood CellsBlood CirculationBlood PlateletsBlood TransfusionBlood VesselsBlood ViscosityBlood specimenCaliberCaringCell CommunicationCellsChronicClinicalClinical ResearchCoagulation ProcessCollaborationsComplexComputational TechniqueComputer ModelsCoupledDataDevicesEndotheliumEngineeringErythrocytesExperimental HematologyFiberFunctional disorderGeneticGoalsGrantGuidelinesHematocrit procedureHematological DiseaseHematologyHemoglobinHemoglobin concentration resultHyperviscosityIn VitroInflammatoryLeadLeukocytesLifeLiquid substanceMeasuresMediatingMendelian disorderMethodsMicrocirculationMicrofluidicsModelingNational Heart, Lung, and Blood InstituteNecrosisOxygenPathologic ProcessesPatientsPhysiciansPhysiologicalPlasmaProcessPropertyProteinsRegimenResearchResistanceReticulocytesRisk FactorsSamplingSickle CellSickle Cell AnemiaSickle HemoglobinStatistical ModelsStrokeSystemTechnologyTestingTimeTransfusionVeno-Occlusive DiseaseVenousViscosityWhole BloodWood materialWorkacute chest syndromebiophysical propertiescohortcytokineendothelial dysfunctionevidence baseexperienceexperimental studyfallshemoglobin polymerin vitro Assayin vitro Modelin vivoindividual patientmicrofluidic technologymicrosystemsmultidisciplinarymutantnovelnovel therapeutic interventionnovel therapeuticspreventpublic health relevancereconstitutionsoundtoolvaso-occlusive crisis
项目摘要
Project Summary/Abstract
Sickle cell disease (SCD) is a devastating monogenic disease in which mutant hemoglobin polymerizes
into rigid fibers leading to red cell (RBC) stiffening, and, canonically, to increased blood viscosity and to
the pathologic process of vaso-occlusion. The concept of blood viscosity is clinically important, as physicians are
instructed to use blood transfusions judiciously to avoid “hyperviscosity” but are also hampered by clinical
transfusion guidelines that are scientifically oversimplified and not evidence-based. This overly simplified view
of blood viscosity is problematic for several reasons. First, the guidelines overlook the reality that blood viscosity
depends on blood vessel size, shear rate, and oxygen tension (which directly affects RBC stiffness) in SCD, in
addition to hemoglobin (Hb) concentrations. Furthermore, in the microcirculation, where SCD pathophysiology
takes place and the caliber of the blood vessel approaches the size of the blood cells, a complex fluid such as
blood cannot be described by its “bulk” viscosity. Finally, the last several decades of research have revealed that
SCD also involves endothelial dysfunction and aberrant adhesion and a multitude of cell-cell interactions
involving reticulocytes, platelets, and leukocyte subpopulations, all of which are further modulated by hemolytic
byproducts, coagulation proteins, and inflammatory cytokines. Therefore, the multifactorial interactions of these
complex biophysical and biological characteristics synergize to alter the “effective” viscosity of blood, especially
in the microcirculation. These complex processes that contribute to effective viscosity in SCD cannot be
quantitatively studied in in vivo animal models, and no existing in vitro assays can integrate all of these variables.
To that end, for this MPI R01 grant, Drs. Wood and Lam, who both have extensive and complementary
expertise in microsystems engineering and experimental hematology, in close collaboration with Dr. Kemp, a
systems biologist, will apply a multi-disciplinary experimental and computational approach to develop an in vitro
model of the vasculature that incorporates all of the relevant physical, biological, and biochemical variables that
contribute to increased effective blood viscosity and therefore, vaso-occlusion in SCD. The vast amounts of data
generated by our experiments will then be computationally and statistically modeled to construct a
comprehensive understanding of effective blood viscosity in the context of SCD vaso-occlusion. Successful
completion of this project will also serve as an analytical platform that will ultimately lead to patient-specific
transfusion regimens catered towards each patient’s individual hematologic profile. Moreover, the approach and
methods developed here will be the basis to developing new therapeutic strategies for SCD.
项目概要/摘要
镰状细胞病 (SCD) 是一种破坏性单基因疾病,突变血红蛋白发生聚合
变成刚性纤维,导致红细胞 (RBC) 硬化,并且通常会增加血液粘度并导致
血管闭塞的病理过程 血液粘度的概念在临床上很重要,正如医生所认为的那样。
指示明智地使用输血以避免“高粘血症”,但也受到临床的阻碍
输血指南在科学上过于简单化,而且没有证据支持。这种过于简化的观点。
首先,该指南忽视了血液粘度的现实。
取决于 SCD 中的血管大小、剪切速率和氧张力(直接影响红细胞硬度),
除了血红蛋白 (Hb) 浓度之外,在微循环中,SCD 的病理生理学也是如此。
发生并且血管的口径接近血细胞的大小,血细胞是一种复杂的流体,例如
最后,过去几十年的研究表明,血液不能用其“整体”粘度来描述。
SCD 还涉及内皮功能障碍和异常粘附以及多种细胞间相互作用
网织红细胞、血小板和白细胞亚群,所有这些都受到溶血作用的进一步调节
副产物、凝血蛋白和炎症细胞因子,因此,这些因素是多因素相互作用的。
复杂的生物物理和生物特性协同作用改变血液的“有效”粘度,特别是
这些在 SCD 中产生有效粘度的复杂过程是不可能的。
在体内动物模型中进行定量研究,并且现有的体外测定无法整合所有这些变量。
为此,Wood 博士和 Lam 博士在 MPI R01 资助中拥有广泛且互补的资源。
与 Kemp 博士密切合作,在微系统工程和实验血液学方面拥有专业知识
系统生物学家,将应用多学科实验和计算方法来开发体外
脉管系统模型,包含所有相关的物理、生物和生化变量
有助于增加有效血液粘度,从而导致 SCD 中的血管闭塞。
然后,我们的实验生成的数据将通过计算和统计建模来构建
全面了解 SCD 血管闭塞成功情况下的有效血液粘度。
该项目的完成还将作为一个分析平台,最终将导致针对患者的具体情况
输血方案适合每个患者的个体血液学特征。
这里开发的方法将成为开发新的 SCD 治疗策略的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilbur A Lam其他文献
Sensitivity of Rapid Antigen Tests Against SARS-CoV-2 Omicron and Delta Variants
针对 SARS-CoV-2 Omicron 和 Delta 变体的快速抗原检测的敏感性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Rao;Adrianna L Westbrook;Leda Bassit;Richard Parsons;Eric Fitts;M. Greenleaf;K. McLendon;J. Sullivan;William Henry Oâ Sick;T. Baugh;Heather B Bowers;Filipp Frank;E. Wang;Mimi Le;Jennifer K. Frediani;Pavitra Roychoudhury;A. Greninger;R. Jerris;N. Pollock;Eric A. Ortlund;John D Roback;Wilbur A Lam;A. Piantadosi - 通讯作者:
A. Piantadosi
Clinical evaluation of the Diagnostic Analyzer for Selective Hybridization (DASH): a point-of-care PCR test for rapid detection of SARS-CoV-2 infection
选择性杂交诊断分析仪 (DASH) 的临床评估:用于快速检测 SARS-CoV-2 感染的即时 PCR 检测
- DOI:
10.1101/2022.01.24.22269785 - 发表时间:
2022-01-25 - 期刊:
- 影响因子:0
- 作者:
C. Achenbach;M. Caputo;C. Hawkins;Lauren C. Balmert;Chao Qi;Joseph Odorisio;E. Dembele;Alema Jackson;Hiba Abbas;J. Frediani;J. Levy;P. Rebolledo;R. Kempker;A. Esper;Wilbur A Lam;Greg S. Martin;R. Murphy - 通讯作者:
R. Murphy
Wilbur A Lam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilbur A Lam', 18)}}的其他基金
Engineering biophysical microtechnologies for hematologic applications in health and disease
工程生物物理微技术在健康和疾病中的血液学应用
- 批准号:
9898450 - 财政年份:2019
- 资助金额:
$ 73.7万 - 项目类别:
Engineering biophysical microtechnologies for hematologic applications in health and disease
工程生物物理微技术在健康和疾病中的血液学应用
- 批准号:
10579951 - 财政年份:2019
- 资助金额:
$ 73.7万 - 项目类别:
Engineering biophysical microtechnologies for hematologic applications in health and disease
工程生物物理微技术在健康和疾病中的血液学应用
- 批准号:
10350610 - 财政年份:2019
- 资助金额:
$ 73.7万 - 项目类别:
SBIR phase II: A personalized, non-invasive hemoglobin level monitoring and management platform for chronic anemia patients.
SBIR II 期:针对慢性贫血患者的个性化、无创血红蛋白水平监测和管理平台。
- 批准号:
10458078 - 财政年份:2018
- 资助金额:
$ 73.7万 - 项目类别:
Emergency COVID-19 Variant Supplement for Atlanta Center for Microsystems Engineered Point-of-Care Technologies (ACME POCT)
亚特兰大微系统工程护理点技术中心 (ACME POCT) 的紧急 COVID-19 变异补充品
- 批准号:
10476947 - 财政年份:2018
- 资助金额:
$ 73.7万 - 项目类别:
Atlanta Center for Microsystems Engineered Point-of-Care Technologies (ACME POCT)
亚特兰大微系统工程护理点技术中心 (ACME POCT)
- 批准号:
10488287 - 财政年份:2018
- 资助金额:
$ 73.7万 - 项目类别:
ACME POCT EMERGENCY COVID-19 VARIANT TESTING & INDEPENDENT TEST ASSESSMENT EVALUATION SUPPLEMENT
ACME POCT 紧急 COVID-19 变异检测
- 批准号:
10652790 - 财政年份:2018
- 资助金额:
$ 73.7万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 73.7万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 73.7万 - 项目类别:
The role of master regulator NtrC in amyloid fibril dependent pathogenic traits of Pseudomonas aeruginosa
主调节因子 NtrC 在铜绿假单胞菌淀粉样原纤维依赖性致病性状中的作用
- 批准号:
10652868 - 财政年份:2023
- 资助金额:
$ 73.7万 - 项目类别:
Investigation of novel chlamydia vaccines in male infection models and sexual transmission challenges
新型衣原体疫苗在男性感染模型和性传播挑战中的研究
- 批准号:
10750828 - 财政年份:2023
- 资助金额:
$ 73.7万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 73.7万 - 项目类别: