Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
基本信息
- 批准号:10022175
- 负责人:
- 金额:$ 54.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAgingAnimalsAstrocytesBinding ProteinsBiologicalBiomimeticsBiosensorBrainCell CountCell Culture TechniquesCellsChronicClinicalCognitionCommunitiesDevelopmentDevicesDisease ProgressionEnsureEnvironmentEnzymesExposure toForeign-Body ReactionFreeze DryingHealthImmobilizationImmunoassayImplantIn VitroInflammatoryLearningLightLocationLongevityManufacturer NameMapsMediatingMembraneMemoryMichiganMicrogliaModelingMonitorMovementMusNatureNeural Cell Adhesion Molecule L1NeuritesNeuronsNeurosciencesNeurosciences ResearchNoisePerformancePopulationProceduresProtein ArrayProteinsProtocols documentationRattusReactionResolutionRodentRouteShippingSignal TransductionSterilizationSurfaceTechnologyTestingTimeTissuesUniversitiesWorkbasebrain computer interfacebrain machine interfacebrain tissueclinical translationcrosslinkdensityexperimental studyimplantationimprovedin vivointerestmedical implantmicrosystemsmulti-electrode arraysnanodevicenanoparticleneural prosthesisnonhuman primatepreservationrelating to nervous systemresponsewound healing
项目摘要
Project Summary
The ability to monitor activity of ensembles of neurons at single-cell resolution, chronically, over long time
periods is greatly desired by neuroscientists. A variety of multi-electrode arrays (MEAs) have been developed
for in vivo studies. These arrays are capable of revealing the activity of neuronal ensembles. Unfortunately,
none of the devices on the market is fully capable of obtaining recordings that are simultaneously high-yield
and high-quality, as well as stable and useful over months to years. This well-known challenge has greatly
limited our ability to track the activity of populations of single neurons over a sufficient period of time to fully
investigate circuit change during learning and memory, development and aging, or disease progression and
wound healing. Additionally, the clinical use of brain machine interface (BMI), which utilize recorded neural
activities to decode movement intent for controlling machine, has been hindered by the unstable and unreliable
recording.
We have developed a biomimetic coating composed of a brain-derived L1-cell adhesion molecule that mitigate
the inflammatory host tissue reaction. In rodents, L1 coated NeuroNexas probes maintained high quality neural
recording over the period of 16 weeks with significant higher single unit yield and signal to noise ratio than the
uncoated control probes. Meanwhile, recordings in non-human primates (NHPs) with L1-coated Blackrock
MEAs also demonstrated high quality performance in single unit yield and signal amplitude for at least 6
months. MEA manufacturers and users expressed strong interest in utilizing this technology. However, the
coating made of biological protein is fragile and may lose bioactivity during the harsh environment of shipping,
storage and sterilization. In order to make the L1 coating a technology that can be widely adopted by the
neuroscience community, we propose to optimize the coating stability and develop practical protocols for
coating preservation, storage, packaging, delivery and sterilization. The bioactivity of the coating prepared with
different protocols will first be tested with cell cultures. Promising procedures will then be tested with
implantation and recording in rodents at the University of Pittsburgh. Once optimum coating and procedures
are determined, coated arrays will be delivered to users to evaluate the coating performance. Dr. Buzsaki
(NYU) will test the L1 coated NeuroNexas arrays in freely moving rats. Dr. Schwartz (U. Pitt) and Dr. Chestek
(U. Michigan) will test the L1 coated Blackrock arrays in NHPs for BMI studies. Users will work closely with us
to define specific performance criteria in their recording applications, compare performance of coated and
uncoated arrays, and provide user input for us to improve the packaging and delivery. Throughout the project,
representatives from two MEA manufacturers, Blackrock Microsystems and NeuroNexus Technology, will
serve as consultants to ensure compatibility of our procedures with their devices and guide us on the path to
dissemination.
The project will produce a coating technology that is both easy to adopt and generalizable to all types of state-
of-art and emerging MEAs. Solving the practical issues of sterilization, packaging and delivery is a critical step
toward commercial and clinical translation of the technology. High quality and stable of neural recording will
greatly improve our ability to map brain activity in long-term experiments, and benefit brain-computer interfaces
and other types of neural prostheses. In a broader sense, the protocols developed here for preserving
immobilized protein during storage, delivery and sterilization should be applicable to other medical implants
containing bioactive proteins, immunoassays, protein arrays, enzyme-based biosensors or any micro/nano
devices that incorporate biological components.
项目概要
能够以单细胞分辨率长期监测神经元群的活动
神经科学家非常渴望得到这样的周期。已开发出多种多电极阵列(MEA)
用于体内研究。这些阵列能够揭示神经元群的活动。很遗憾,
市场上没有一种设备完全能够同时获得高产量的录音
高品质,并且在数月至数年内稳定且有用。这个众所周知的挑战极大地
限制了我们在足够长的时间内追踪单个神经元群体活动的能力,以充分了解
研究学习和记忆、发育和衰老或疾病进展过程中的回路变化,
伤口愈合。此外,脑机接口(BMI)的临床应用利用记录的神经元
解码运动意图以控制机器的活动受到不稳定和不可靠的阻碍
记录。
我们开发了一种由脑源性 L1 细胞粘附分子组成的仿生涂层,可减轻
宿主组织的炎症反应。在啮齿类动物中,L1 涂层 NeuroNexas 探针保持了高质量的神经
16 周内的记录,单单位产量和信噪比明显高于
无涂层控制探头。与此同时,使用 L1 涂层 Blackrock 在非人类灵长类动物 (NHP) 中进行录音
MEA 还展示了至少 6 个单位产量和信号幅度的高质量性能
几个月。 MEA制造商和用户对利用该技术表现出浓厚的兴趣。然而,
由生物蛋白制成的涂层很脆弱,在恶劣的运输环境中可能会失去生物活性,
储存和灭菌。为了使L1涂层成为能够被广泛采用的技术
神经科学界,我们建议优化涂层稳定性并开发实用的方案
涂料的保存、储存、包装、运输和灭菌。制备的涂层的生物活性
不同的方案将首先用细胞培养物进行测试。然后将测试有前途的程序
匹兹堡大学的啮齿动物植入和记录。一旦最佳涂层和程序
确定后,涂层阵列将交付给用户以评估涂层性能。布萨基博士
(纽约大学)将在自由活动的老鼠身上测试 L1 涂层 NeuroNexas 阵列。 Schwartz 博士(皮特大学)和 Chestek 博士
(美国密歇根州)将在 NHP 中测试 L1 涂层 Blackrock 阵列,用于 BMI 研究。用户将与我们密切合作
定义其记录应用中的具体性能标准,比较涂层和
未涂层阵列,并为我们提供用户意见以改进包装和交付。在整个项目过程中,
来自 Blackrock Microsystems 和 NeuroNexus Technology 两家 MEA 制造商的代表将
担任顾问,确保我们的程序与其设备的兼容性,并指导我们走上
传播。
该项目将生产一种易于采用且可推广到所有类型国家的涂层技术。
艺术和新兴 MEA。解决灭菌、包装和运输的实际问题是关键的一步
致力于该技术的商业和临床转化。高质量和稳定的神经记录将
大大提高我们在长期实验中绘制大脑活动图谱的能力,并有利于脑机接口
和其他类型的神经假体。从更广泛的意义上讲,这里开发的协议是为了保存
储存、运输和灭菌过程中固定化的蛋白质应适用于其他医疗植入物
含有生物活性蛋白质、免疫分析、蛋白质阵列、酶基生物传感器或任何微/纳米
包含生物成分的设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XINYAN Tracy CUI其他文献
XINYAN Tracy CUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XINYAN Tracy CUI', 18)}}的其他基金
Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief
节省阿片类药物的非手术生物可吸收神经刺激器,用于缓解疼痛
- 批准号:
10759642 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
- 批准号:
10264798 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Ultra sensitive and flexible MEAs for chronic dopamine detection at both tonic and phasic levels
超灵敏且灵活的 MEA,用于强直和阶段性水平的慢性多巴胺检测
- 批准号:
9814422 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
- 批准号:
10470899 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10421288 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
9979986 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10183351 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10622204 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10842106 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10653699 - 财政年份:2019
- 资助金额:
$ 54.05万 - 项目类别:
相似国自然基金
纳米稀土CeO2在土壤-动物体系中的形态转化、累积分布及毒性作用机制
- 批准号:41877500
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
miR-34c在保护高糖诱导的VSMCs早衰并延缓糖尿病血管老化与钙化中的作用及机制
- 批准号:81770833
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
研究细胞/组织器官衰老与机体衰老关联机制的条件性敲入小鼠模型的建立与分析
- 批准号:81571374
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
缝隙连接蛋白26在老年性耳聋中的表达及其甲基化作用机制研究
- 批准号:81500795
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
改善年龄老化导致下肢新生血管生成障碍的实验研究
- 批准号:81070257
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Transcriptional regulation of neuroprotective microglia subtypes in health and disease
健康和疾病中神经保护性小胶质细胞亚型的转录调控
- 批准号:
10679200 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
How women’s reproductive life-history relates to cognitive decline and neuropathology in Alzheimer’s disease and related dementias
女性的生殖生活史与阿尔茨海默病和相关痴呆症的认知能力下降和神经病理学有何关系
- 批准号:
10740751 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Machine learning based frailty index for the genetically diverse mice
基于机器学习的遗传多样性小鼠的衰弱指数
- 批准号:
10688138 - 财政年份:2022
- 资助金额:
$ 54.05万 - 项目类别: