Efficiency and Safety of Microstimulation Via Different Electrode Materials

通过不同电极材料进行微刺激的效率和安全性

基本信息

项目摘要

Microstimulation has been an invaluable tool for neuroscience researchers to infer functional connections between brain structures or causal links between structure and behavior. In recent years, therapeutic microstimulation is gaining interest for the restoration of visual, auditory and somatosensory functions as well as emerging applications in bioelectronic medicine. Current neural stimulation parameters and safety limits need to be revised for microelectrodes using more systematic and advanced methodologies. Stimulations via microelectrodes often require high charge injection for effective modulation of neural tissue without exceeding the threshold to harm the tissue or the electrodes. Therefore, advanced electrode materials with high charge injection capability and stability are highly desired. We have developed several types of stimulation materials based on conducting polymer PEDOT and nanomaterial composites. These materials present different charge transfer and electrochemical properties as well as biocompatibility, and the effects of these properties on microstimulation have yet to be comprehensively characterized. This proposal aims to establish new in vitro and in vivo models to examine the efficiency and safety of stimulation via multiple electrode materials, ranging from the clinically approved Pt and Iridium Oxide (IrOx) to the emerging PEDOT nanocomposites. Another challenge with micro-stimulation is its sensitivity to host tissue responses. Implantation of electrodes causes electrode fouling, progressive neuronal loss and inflammatory gliosis immediately surrounding the implants. Loss of nearby neurons and axons leads to decreased stimulation efficacy, while electrode fouling and gliosis increase impedance. Additionally, stimulation itself may further exacerbate host tissue responses if above the safety limit, which has yet to be defined for microelectrodes and emerging electrode materials. Using in vivo imaging in fluorescently labeled mice, we will examine the acute and chronic effects of microstimulation on neurons, microglia and vasculature, while monitoring the electrode material and electrochemical products. We will use an in vitro multielectrode arrays (MEA) system to study the effects of electrical stimulation on material and cells, in order to pinpoint the mechanisms of material and tissue damage. The first aime is to assess the efficiency and safety limit of neural stimulation via different electrode materials in vivo in acute experiments. For efficiency testing, we will implant the electrodes in the cortices of GCaMP mice and use 2-photon microscopy to image the calcium signal in order to determine stimulation threshold and optimum stimulation parameter for each electrode material. as a function of stimulation parameters. Stimulation threshold and efficiency for different pulse width, interphase period, bias potential and frequency from each electrode material type will be determined. For safety testing, we will use Syn-RCaMP/Cx3Cr1-GFP mice to visualize both neuronal and microglia cells and determine the damage threshold. The second aim is to examine the effects of stimulation on electrode materials and cultured cells in vitro. Using a high-throughput in vitro MEA system in which the six microelectrode materials can be deposited, we will stimulate at safe and unsafe parameters (identified in vivo from Aim 1) for up to 12 weeks. We will assess electrode material stability and analyze the stimulated media to identify electrochemical and degradation products. The toxicity of stimulated media will be tested in cultures of neuron, microglia, endothelial cells and neuron-microglia co-culture at varying doses to determine the detrimental effects of electrochemical and degradation products on these cells. Finally, we will directly stimulate the cells cultured on MEAs and characterize cell behavior using quantitative RNA and protein analysis, neural recording/stimulation and immunohistochemistry. The third aim is to characterize the chronic safety and stability of microstimulation in vivo from different electrode materials. Stimulation will be applied one hour per day to microelectrode arrays chronically implanted in Syn-RCaMP/Cx3Cr1-GFP animals for 12 weeks. In each weekly imaging session, we will measure the in vivo impedance, CV, charge injection limit, and stimulation threshold. The neuronal response (activity, health, density), microglia (morphology, coverage and motility) and BBB integrity will be recorded, and compared over time points between material types, and to the non-stimulated sites. In addition, we will closely track the electrode health with electrochemical interrogation, imaging and explant analysis.
微刺激已成为神经科学研究人员推断功能连接的宝贵工具 大脑结构之间或结构与行为之间的因果联系。近年来,治疗 微刺激对于恢复视觉、听觉和体感功能也越来越感兴趣 作为生物电子医学的新兴应用。当前的神经刺激参数和安全极限 需要使用更系统和更先进的方法对微电极进行修改。刺激通过 微电极通常需要高电荷注入才能有效调节神经组织而不超过 损害组织或电极的阈值。因此,先进的高电荷电极材料 注射能力和稳定性是非常需要的。我们开发了多种类型的刺激材料 基于导电聚合物PEDOT和纳米材料复合材料。这些材料呈现不同的电荷 转移和电化学性能以及生物相容性,以及这些性能对 微刺激尚未得到全面的表征。该提案旨在建立新的体外 和体内模型来检查通过多种电极材料进行刺激的效率和安全性,范围 从临床批准的铂和氧化铱 (IrOx) 到新兴的 PEDOT 纳米复合材料。其他 微刺激的挑战在于其对宿主组织反应的敏感性。电极植入原因 电极污染、进行性神经元损失和植入物周围的炎症性神经胶质增生。 附近神经元和轴突的损失导致刺激效果下降,而电极污染和神经胶质增生 增加阻抗。此外,如果高于刺激本身可能会进一步加剧宿主组织的反应。 安全限值,微电极和新兴电极材料尚未定义。体内使用 通过荧光标记小鼠的成像,我们将检查微刺激对小鼠的急性和慢性影响 神经元、小胶质细胞和脉管系统,同时监测电极材料和电化学产品。我们 将使用体外多电极阵列(MEA)系统来研究电刺激对材料的影响 和细胞,以查明材料和组织损伤的机制。 第一个目标是通过不同的方式评估神经刺激的效率和安全极限 急性实验中的体内电极材料。为了进行效率测试,我们将电极植入 GCaMP 小鼠的皮质并使用 2 光子显微镜对钙信号进行成像以确定 每种电极材料的刺激阈值和最佳刺激参数。作为一个函数 刺激参数。不同脉冲宽度、相间周期、偏置的刺激阈值和效率 将确定每种电极材料类型的电势和频率。对于安全测试,我们将使用 Syn-RCaMP/Cx3Cr1-GFP 小鼠可可视化神经元和小胶质细胞并确定损伤 临界点。 第二个目的是检查刺激对电极材料和培养物的影响 体外细胞。使用高通量体外 MEA 系统,其中六种微电极材料可以 沉积后,我们将以安全和不安全参数(根据目标 1 在体内确定)进行刺激长达 12 周。 我们将评估电极材料的稳定性并分析受激介质以识别电化学和 降解产物。刺激介质的毒性将在神经元、小胶质细胞、 不同剂量的内皮细胞和神经元-小胶质细胞共培养,以确定有害影响 这些电池上的电化学和降解产物。最后,我们将直接刺激培养的细胞 MEA 并使用定量 RNA 和蛋白质分析、神经记录/刺激来表征细胞行为 和免疫组织化学。 第三个目标是表征体内微刺激的长期安全性和稳定性 不同的电极材料。每天对微电极阵列施加一小时的刺激 长期植入 Syn-RCaMP/Cx3Cr1-GFP 动物体内 12 周。在每周的成像会议中,我们 将测量体内阻抗、CV、电荷注入限制和刺激阈值。神经元 反应(活动、健康、密度)、小胶质细胞(形态、覆盖范围和运动性)和 BBB 完整性将 记录并比较不同材料类型之间的时间点以及与非刺激位点的情况。此外, 我们将通过电化学询问、成像和外植体分析来密切跟踪电极的健康状况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XINYAN Tracy CUI其他文献

XINYAN Tracy CUI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XINYAN Tracy CUI', 18)}}的其他基金

Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief
节省阿片类药物的非手术生物可吸收神经刺激器,用于缓解疼痛
  • 批准号:
    10759642
  • 财政年份:
    2023
  • 资助金额:
    $ 60.44万
  • 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
  • 批准号:
    10264798
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Ultra sensitive and flexible MEAs for chronic dopamine detection at both tonic and phasic levels
超灵敏且灵活的 MEA,用于强直和阶段性水平的慢性多巴胺检测
  • 批准号:
    9814422
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
  • 批准号:
    10470899
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
  • 批准号:
    10421288
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
  • 批准号:
    9979986
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
  • 批准号:
    10622204
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
  • 批准号:
    10842106
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
  • 批准号:
    10653699
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
  • 批准号:
    10022175
  • 财政年份:
    2019
  • 资助金额:
    $ 60.44万
  • 项目类别:

相似国自然基金

城市化对土壤动物宿主-寄生虫关系的影响机制研究
  • 批准号:
    32301430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三江源国家公园黄河源园区食草野生动物与放牧家畜冲突的强度、影响及未来情景
  • 批准号:
    42371283
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
  • 批准号:
    32301370
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
两栖动物(蛙类)对新型卤代有机污染物的生物富集及其对污染物环境迁移影响的研究
  • 批准号:
    42307349
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
土壤动物对草地生态系统地下食物网碳氮传输过程及土壤有机质形成的影响
  • 批准号:
    32301359
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Blockade of cMYC oncogenic function by pregnancy-induced alterations and remodeling of the mammary gland
通过妊娠引起的乳腺改变和重塑来阻断 cMYC 致癌功能
  • 批准号:
    10734182
  • 财政年份:
    2023
  • 资助金额:
    $ 60.44万
  • 项目类别:
Determining the shared neuronal network mechanisms of focal epileptic discharges and impaired memory processing in temporal lobe epilepsy
确定颞叶癫痫局灶性癫痫放电和记忆处理受损的共享神经元网络机制
  • 批准号:
    10734254
  • 财政年份:
    2023
  • 资助金额:
    $ 60.44万
  • 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
  • 批准号:
    10685195
  • 财政年份:
    2023
  • 资助金额:
    $ 60.44万
  • 项目类别:
Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
  • 批准号:
    10679154
  • 财政年份:
    2023
  • 资助金额:
    $ 60.44万
  • 项目类别:
Airborne Particulates, Corneal Oxidative Stress and Infection
空气中的颗粒物、角膜氧化应激和感染
  • 批准号:
    10704266
  • 财政年份:
    2023
  • 资助金额:
    $ 60.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了