Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
基本信息
- 批准号:10761217
- 负责人:
- 金额:$ 148.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcuteAddressAdoptedAgingAnimal ExperimentationAnimal ModelAnimalsBRAIN initiativeBasic ScienceBiologicalBrainBusinessesCarbonCatecholsCharacteristicsChargeChronicCicatrixCollaborationsCommunitiesDevelopmentDevicesDiseaseDocumentationElectrodesElectron MicroscopyEncapsulatedEthylenediaminesExcisionFiberFunctional disorderFutureGeometryGoalsHazardous SubstancesHemorrhageHumanImplantIn VitroIndustryInjectionsLaboratoriesLaboratory ResearchLegal patentLongevityMarket ResearchMarketingMeasurementMeasuresMental disordersMethodsMichiganMicroelectrodesMicrofabricationModernizationMotorMovementNeural InterconnectionNeuronsNeurosciencesNeurotransmittersNoiseOccupationalOutcomePatientsPenetrationPerformancePeriodicityPhasePhysiologic pulsePositioning AttributeProcessProductionProtocols documentationQuality ControlRattusReproducibilityResolutionSafetySalesScanningSchemeSensoryServicesSignal TransductionSiliconSiteSmall Business Innovation Research GrantSpectrum AnalysisSurfaceSystemTechniquesTechnologyTestingTimeTissuesTranslatingTranslationsTraumatic injuryUniversitiesUtahValidationVisualbiomaterial compatibilitycarbon fibercarcinogenicityclinical translationdata acquisitiondensitydesignelectric impedanceexperiencefabricationflexibilityimprovedin vivolaboratory developmentloss of functionmanufacturabilitymanufacturemicrosystemsminiaturized devicemulti-electrode arraysmultimodalitynervous system disorderneuralneural circuitneural implantneural prosthesisneurotechnologynext generationnoveloperationpre-clinical researchresearch and developmentstatisticssuccesssystems researchtoolwireless
项目摘要
ABSTRACT
The ability to measure and manipulate local brain circuit activity in living, behaving animals is essential to
understanding the complexities of brain function and dysfunction. A novel, penetrating high-density carbon fiber
electrode array composed of flexible, ultrathin conductive carbon microfibers was recently developed under the
BRAIN Initiative to study neural microcircuit dynamics. In contrast to conventional microelectrode arrays, carbon
fiber arrays are exceptionally biocompatible and produce minimal glial scarring resulting in exceptional proximity
of the recording electrodes to neurons for unprecedented single-unit recording yield with improved electrode
stability, high signal-to-noise recording, and high charge injection capacity (CIC) for superior stimulation. In
addition, these arrays can be used to measure neurotransmitter or other biological compounds using fast-scan
cyclic voltammetry (FSCV). Led by Blackrock Neurotech, a pioneer and industry leader in microelectrode array
fabrication, the goal of this Direct-to-Phase II SBIR is to translate the novel laboratory fabricated high-density
carbon fiber array (C-CFA) by the Chestek lab at the University of Michigan to a state-of-the-art commercial
product (BRN-CFA) to enable broad dissemination of this powerful and versatile neurotechnology across the
neuroscience community. Aim 1: Microfabrication and assembly of the BRN-CFA will dramatically improve the
microfabrication process for the silicon support shuttles of the carbon fibers in the BRN-CFA by removing
occupationally hazardous materials from the fabrication scheme and adopting a modern silicon-on-insulator
wafer fabrication process to improve manufacturing safety, efficiency, and reliability. Array assembly and
fabrication will occur under Blackrock’s Quality Management System. Aim 2: Performance validation and process
transfer to Blackrock Neurotech will assess the optimized BRN-CFA electrical characteristics, robustness,
stability, and longevity through in-vitro electrical, electrochemical testing, accelerated aging, and visual
inspection. Analyses will be cross-validated against the C-CFA. The validated geometry, fabrication, and
assembly processes will be transferred to Blackrock manufacturing to enable robust and reproducible production.
Aim 3. In-vivo chronic performance validation of the BRN-CFA will cross-validate the BRN-CFA against the C-
CFA in a 6-month in-vivo study in rat cortex to assess insertability and chronic performance of the devices. The
successful outcome of this project will be the first commercially available BRN-CFA with exceptional performance
for the study of local neural circuit dynamics. By addressing this critical, unmet need, the BRN-CFA product
promises to accelerate basic scientific discovery of brain dynamics and the development of next-generation
therapies.
抽象的
测量和操纵活体、行为动物的局部脑回路活动的能力对于
了解大脑功能和功能障碍的复杂性。
由柔性超薄导电碳微纤维组成的电极阵列是最近在
大脑计划研究神经微电路动力学与传统的微电极阵列相比,碳。
纤维阵列具有出色的生物相容性,并产生最小的神经胶质疤痕,从而实现卓越的接近度
将记录电极连接到神经元,通过改进的电极实现前所未有的单单元记录产量
稳定性、高信噪比记录和高电荷注入能力 (CIC),可实现卓越的刺激。
此外,这些阵列可用于使用快速扫描来测量神经递质或其他生物化合物
循环伏安法 (FSCV) 由微电极阵列领域的先驱和行业领导者 Blackrock Neurotech 领导。
制造,这个直接进入第二阶段 SBIR 的目标是将新型实验室制造的高密度
密歇根大学 Chestek 实验室将碳纤维阵列 (C-CFA) 应用于最先进的商业化
产品(BRN-CFA),使这种强大且多功能的神经技术能够在整个世界范围内广泛传播
目标 1:BRN-CFA 的微加工和组装将极大地改善神经科学界的神经科学界。
BRN-CFA 中碳纤维硅支撑梭的微加工工艺,通过去除
制造方案中不含职业危险材料,并采用现代绝缘体上硅
晶圆制造工艺,以提高制造安全性、效率和阵列组装和可靠性。
制造将在贝莱德的质量管理体系下进行,目标 2:性能验证和流程。
转移到 Blackrock Neurotech 将评估优化的 BRN-CFA 电气特性、稳健性、
通过体外电气、电化学测试、加速老化和视觉测试来确定稳定性和寿命
检查将根据 C-CFA 验证的几何形状、制造和交叉验证。
装配工艺将转移至 Blackrock 制造,以实现稳健且可重复的生产。
目标 3. BRN-CFA 的体内长期性能验证将交叉验证 BRN-CFA 与 C-
CFA 在一项为期 6 个月的大鼠皮层体内研究中进行,以评估设备的可插入性和长期性能。
该项目的成功成果将是第一个具有卓越性能的商用 BRN-CFA
为了研究局部神经回路动力学,BRN-CFA 产品解决了这一关键的、未满足的需求。
承诺加速大脑动力学的基础科学发现和下一代的开发
疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajmohan Bhandari其他文献
Rajmohan Bhandari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajmohan Bhandari', 18)}}的其他基金
An implantable chronic 128 channel macro and micro ECoG system with integrated recording, stimulation, and impedance measuring capabilities
植入式慢性 128 通道宏观和微观 ECoG 系统,具有集成记录、刺激和阻抗测量功能
- 批准号:
9085458 - 财政年份:2015
- 资助金额:
$ 148.76万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 148.76万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 148.76万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8715283 - 财政年份:2014
- 资助金额:
$ 148.76万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8877517 - 财政年份:2014
- 资助金额:
$ 148.76万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8617312 - 财政年份:2013
- 资助金额:
$ 148.76万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8453715 - 财政年份:2013
- 资助金额:
$ 148.76万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8729033 - 财政年份:2013
- 资助金额:
$ 148.76万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8523542 - 财政年份:2013
- 资助金额:
$ 148.76万 - 项目类别:
Development and Commercialization of Next Generation of Neural Microelectrode Arr
下一代神经微电极Arr的开发和商业化
- 批准号:
8057215 - 财政年份:2011
- 资助金额:
$ 148.76万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Characterizing chemical threat agent exposures using a lung-on-a-chip platform and multi-omic analysis of common pathophysiological mechanisms
使用芯片肺平台和常见病理生理机制的多组学分析来表征化学威胁剂暴露
- 批准号:
10708553 - 财政年份:2023
- 资助金额:
$ 148.76万 - 项目类别:
Privacy-Aware Federated Learning for Breast Cancer Risk Assessment
用于乳腺癌风险评估的隐私意识联合学习
- 批准号:
10742425 - 财政年份:2023
- 资助金额:
$ 148.76万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 148.76万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 148.76万 - 项目类别:
Hydrogels with Tunable Stress Relaxation and Mobility for Enhancing Articular Cartilage Regeneration
具有可调应力松弛和活动能力的水凝胶可增强关节软骨再生
- 批准号:
10750831 - 财政年份:2023
- 资助金额:
$ 148.76万 - 项目类别: