High-resolution modeling of protein-RNA interfaces
蛋白质-RNA 界面的高分辨率建模
基本信息
- 批准号:10013238
- 负责人:
- 金额:$ 30.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAccountingAddressAdoptionAffinityAlgorithm DesignAlgorithmsAllelesAreaAttentionAwardBenchmarkingBindingBinding ProteinsBiologicalBiological ModelsBiomedical ResearchBlindedCapsid ProteinsCellsCommunicable DiseasesCommunitiesComplexComputer ModelsComputer softwareComputing MethodologiesCryoelectron MicroscopyCrystallizationDNAData SetDevelopmentDiseaseDouble-Stranded RNAEngineeringEventExperimental DesignsFundingGene ExpressionGenerationsGeneticGenomeGrantHIVHereditary DiseaseHigh-Throughput Nucleotide SequencingHumanHuman PathologyLeftLifeLinkMalignant NeoplasmsManualsMapsMeasuresMediatingMethodsModelingMolecular MedicineMutationNerve DegenerationNucleic AcidsOrganismParkinson DiseasePathogenicityPlayPost-Transcriptional RegulationProtein EngineeringProteinsProteomeProtocols documentationPublishingRNARNA BindingRNA FoldingRNA ProcessingRNA Recognition MotifRNA-Binding ProteinsRNA-Protein InteractionRegulationResearchResearch PersonnelResolutionResourcesRibosomesRoleSamplingSavingsSiteSpecificitySpliceosomesStructureSystemTelomeraseTelomere MaintenanceTertiary Protein StructureTestingTimeTranslationsVariantViralVirusVirus DiseasesWorkblindcareercell typecomputerized toolsdensitydesignexperimental studygenetic informationhuman diseasein vivomodel designmolecular modelingmutantnoveloff-target siteprogramsprotein complexsuccesstargeted treatmenttool
项目摘要
SUMMARY
RNA-protein interactions mediate multiple critical regulatory steps in the translation of information from the
genome to the cellular machine, and corruptions of these fundamental interactions are implicated throughout
infectious and inherited disease, neurodegeneration, and cancer. Unfortunately, a scarcity of predictive
computational tools for RNA-protein interactions is slowing the development of potentially life-saving efforts
that either target or repurpose these interactions to address human disease. This proposal brings together four
labs to resolve this bottleneck, building on our recent studies that have achieved – all for the first time – blind
protein-RNA structure predictions reaching near-atomic resolution, large-scale prediction of protein-RNA
binding energetics with accuracy and precision of better than 1 kcal/mol, and redesign of a complex protein-
RNA interface to accurately retarget silencing complexes in vivo. We propose herein to unify, rigorously test,
and disseminate our labs’ methods to tackle three separate but synergistic computational problems in protein-
RNA research: automated correction of errors that pervade experimental protein-RNA complex structures (Aim
1), our richest resources of protein-RNA information; prediction of impacts of mutation on RNA-protein
interaction energetics (Aim 2) that could highlight new regulatory links in disease-associated alleles; and
design of novel engineered RNA-protein interactions (Aim 3) to facilitate rational perturbation of genetic events
to aid biological inquiry and eventually to ameliorate disease. We will evaluate success within each of our Aims
through true blind predictions tested through rapidly emerging cryoelectron microscopy maps and repurposed
sequencers that can measure hundreds of thousands of RNA-protein affinities in single experiments and, more
broadly, by adoption of our Rosetta software and online tools by the general biomedical research community.
The proposed protein-RNA-focused research addresses an area of molecular modeling that has received
surprisingly little attention in the computational community but is unambiguously important for accelerating
biological understanding and molecular medicine.
概括
RNA-蛋白质相互作用介导信息翻译过程中的多个关键调控步骤
基因组到细胞机器,这些基本相互作用的破坏贯穿始终
不幸的是,缺乏预测性的传染病和遗传性疾病、神经退行性疾病和癌症。
RNA-蛋白质相互作用的计算工具正在减缓潜在挽救生命的努力的发展
该提案汇集了四种相互作用来解决人类疾病。
实验室以我们最近的研究为基础,解决了这一瓶颈,这些研究首次实现了盲法
蛋白质-RNA结构预测达到近原子分辨率,大规模预测蛋白质-RNA
结合能量学的准确性和精度优于 1 kcal/mol,并重新设计了复杂的蛋白质 -
RNA 接口可在体内准确地重新定位沉默复合物。
并传播我们实验室的方法来解决蛋白质中三个独立但协同的计算问题
RNA 研究:自动纠正实验蛋白质-RNA 复合结构中普遍存在的错误(目标
1),我们最丰富的蛋白质-RNA信息资源;预测突变对RNA-蛋白质的影响;
相互作用能量学(目标 2)可以突出疾病相关等位基因的新调控联系;
设计新型工程RNA-蛋白质相互作用(目标3)以促进遗传事件的合理扰动
帮助生物学研究并最终改善疾病,我们将评估每个目标的成功程度。
通过真正的盲目预测,通过快速出现的冷冻电子显微镜图进行测试并重新利用
测序仪可以在单个实验中测量数十万个 RNA-蛋白质亲和力,等等
广泛而言,一般生物医学研究界采用我们的 Rosetta 软件和在线工具。
拟议的以蛋白质-RNA 为重点的研究涉及分子建模领域,该领域已获得
令人惊讶的是,计算界很少关注,但对于加速来说无疑是重要的
生物学理解和分子医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Bradley其他文献
Philip Bradley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Bradley', 18)}}的其他基金
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10569090 - 财政年份:2022
- 资助金额:
$ 30.02万 - 项目类别:
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10433774 - 财政年份:2022
- 资助金额:
$ 30.02万 - 项目类别:
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10593429 - 财政年份:2022
- 资助金额:
$ 30.02万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10191763 - 财政年份:2021
- 资助金额:
$ 30.02万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10406274 - 财政年份:2021
- 资助金额:
$ 30.02万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10631595 - 财政年份:2021
- 资助金额:
$ 30.02万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10707065 - 财政年份:2021
- 资助金额:
$ 30.02万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10191763 - 财政年份:2021
- 资助金额:
$ 30.02万 - 项目类别:
High-resolution modeling of protein-RNA interfaces
蛋白质-RNA 界面的高分辨率建模
- 批准号:
9388893 - 财政年份:2017
- 资助金额:
$ 30.02万 - 项目类别:
Rational design and functionalization of circular tandem repeat proteins
环状串联重复蛋白的合理设计和功能化
- 批准号:
9301141 - 财政年份:2017
- 资助金额:
$ 30.02万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Novel MRI coil technology for safe imaging of children with implants
新型 MRI 线圈技术可对植入儿童进行安全成像
- 批准号:
10639661 - 财政年份:2023
- 资助金额:
$ 30.02万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 30.02万 - 项目类别:
Determining the Efficacy of Corneal Cross-Linking Protocols using Brillouin Microscopy
使用布里渊显微镜确定角膜交联方案的功效
- 批准号:
10642876 - 财政年份:2022
- 资助金额:
$ 30.02万 - 项目类别:
Development of the UValidate platform for the profiling of topically applied chemical agents.
开发 UValidate 平台,用于分析局部应用的化学制剂。
- 批准号:
10707098 - 财政年份:2022
- 资助金额:
$ 30.02万 - 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10615697 - 财政年份:2021
- 资助金额:
$ 30.02万 - 项目类别: