How is Fullness Sensed in the Urinary Bladder?
如何感觉到膀胱充盈?
基本信息
- 批准号:10034865
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsAttentionBasic ScienceBehaviorBladderBladder DysfunctionBrainCationsClinicalConsciousCouplingDataDiseaseEventFibroblastsFutureGeneticGiant CellsGoalsGrantHeartImageImage AnalysisImaging TechniquesIon ChannelKnockout MiceLeadLifeLiquid substanceLower urinary tractMeasuresMediatingMethodologyModelingMusNerveNeuraxisOutputOveractive BladderPainPathologyPharmacologyPhysiologicalPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsProcessPropertyRegulationReporterReportingRoleSensorySignal TransductionSiteSmooth MuscleSmooth Muscle MyocytesStimulusStretchingSurfaceSystemTechniquesTimeTranslatingUrineUrodynamicsUrothelial CellUrotheliumWorkafferent nervecell motilitycell typecomparativein vivoinsightinterstitial cellintravesicalmechanical propertiesmechanotransductionmouse modelnovelnovel imaging techniqueoptogeneticspressurereal time monitoringresponsesignal processingtool
项目摘要
SUMMARY
In normal day-to-day life, the sense of urinary bladder fullness is conveyed to the central nervous system such
that voiding of urine is not too frequent, and retaining urine is not too painful. Much attention has focused on
attempting to treat urinary bladder dysfunctions however, to understand any disorder of the lower urinary tract
an essential physiological question must be addressed, and that is: How is bladder fullness sensed?
Amazingly, the basic physiological mechanisms for sensing bladder fullness remain elusive. Exploring this
fundamental question will be the focus of the current proposal, which should deepen our understanding of this
process, providing important insights into the fundamental mechanisms involved in translating bladder fullness
into afferent information. We propose the novel overarching concept that local changes in mechanical properties
of the urinary bladder wall during filling are what drives sensory outflow. Importantly, pressure, per se, does not
drive afferent nerve activity. Rather, it is the local deformation of the bladder wall that is the stimulus for afferent
nerve activity. During filling, local excitation of detrusor smooth muscle (DSM) spreads spatially to cause small
transient contractions of the bladder wall, called micromotions. Micromotions lead to angular distortions and
localized changes in wall tension of the bladder wall. It is this localized change in wall tension that we believe
triggers afferent nerve activity to sense bladder filling. This proposal gets at the heart of determining how fullness
is sensed in the urinary bladder, without speculating about cell types involved in signaling (urothelial cells,
interstitial cells, fibroblasts, etc). This project utilizes numerous novel techniques and approaches, such as our
pentaplanar reflected image macroscopy platform that enables real-time monitoring of micromotions on the entire
surface of the bladder. We have devleoped cutting edge imaging methodologies and signal processing
algorithms to quantify bladder motility and Ca2+ signaling dynamcis. In Aim 1, we will determine the basis for
local excitation of DSM during bladder filling. We will use imaging techniques on mice expessing genetically
encoded Ca2+ indicators to study how the excitatiliby of the DSM affects the spatial spread of Ca2+ signals. Aim
2 explores spatial-temporal relationships between excitation and the rate/extent of angular distortions, and
afferent nerve activity during filling. We will use simultaneous recordings of DSM Ca2+ activity, bladder pressure
and afferent nerve activity. Finally, in Aim 3, we will investigate the basis for mechano-sensing by afferent nerves
in the urinary bladder and the role of Piezo1 and Piezo2 stretch-sensitive cation channels. Importantly, we will
characterize bladder function in Piezo2 knockout mice in vivo. Through completion of this project, we will gain
fundamental insights into the mechanisms whereby physical forces during filling are sensed by the urinary
bladder. Once we gain a full understanding of these processeses, we will be better suited to model, study, and
treat bladder dysfunctions.
概括
在正常的日常生活中,膀胱充盈感会传递到中枢神经系统,例如
排尿不会太频繁,留尿也不会太痛苦。很多注意力都集中在
然而,尝试治疗膀胱功能障碍,了解下尿路的任何疾病
必须解决一个基本的生理问题,即:如何感知膀胱充盈度?
令人惊讶的是,感知膀胱充盈度的基本生理机制仍然难以捉摸。探索这个
根本问题将是当前提案的重点,这应该加深我们对此的理解
过程,提供了有关膀胱充盈度转化的基本机制的重要见解
转化为传入信息。我们提出了新的总体概念,即机械性能的局部变化
充盈期间膀胱壁的变化是驱动感觉流出的原因。重要的是,压力本身并不
驱动传入神经活动。相反,膀胱壁的局部变形是传入神经的刺激。
神经活动。在充盈过程中,逼尿肌平滑肌 (DSM) 的局部兴奋在空间上传播,导致小
膀胱壁的短暂收缩,称为微运动。微动会导致角度扭曲
膀胱壁壁张力的局部变化。我们相信,正是壁张力的这种局部变化
触发传入神经活动来感知膀胱充盈。该提案的核心是确定丰满度如何
在膀胱中被感知,无需推测参与信号传导的细胞类型(尿路上皮细胞、
间质细胞、成纤维细胞等)。该项目利用了许多新颖的技术和方法,例如我们的
五平面反射图像肉眼观察平台,可实时监测整个物体的微运动
膀胱表面。我们开发了尖端的成像方法和信号处理
量化膀胱运动和 Ca2+ 信号动态的算法。在目标 1 中,我们将确定以下基础:
膀胱充盈期间 DSM 的局部兴奋。我们将使用成像技术对表达基因的小鼠进行成像
编码 Ca2+ 指标来研究 DSM 的兴奋性如何影响 Ca2+ 信号的空间传播。目的
2 探讨了激励与角度扭曲率/程度之间的时空关系,以及
充盈期间的传入神经活动。我们将使用 DSM Ca2+ 活性、膀胱压力的同步记录
和传入神经活动。最后,在目标 3 中,我们将研究传入神经机械传感的基础
膀胱中 Piezo1 和 Piezo2 拉伸敏感阳离子通道的作用。重要的是,我们将
表征 Piezo2 敲除小鼠的体内膀胱功能。通过本项目的完成,我们将获得
对充盈过程中物理力被尿液感知的机制的基本见解
膀胱。一旦我们充分了解这些过程,我们将更适合建模、研究和
治疗膀胱功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Heppner其他文献
Thomas Heppner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Heppner', 18)}}的其他基金
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别: