Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments

单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度

基本信息

项目摘要

ABSTRACT Reaching a more complete understanding of biological processes and mechanisms that underlie health and disease demands a better integration of information spanning multiple length and time scales. Super-resolution microscopy and single-molecule approaches have emerged as potent tools that extend the spatial resolution and detection sensitivity in live biological imaging. However, the current state-of-the-art techniques often achieve limited 3D resolution that precludes visualizing spatial organization at the molecular scale. Moreover balancing trade-offs between temporal and spatial resolution, while operating with a limited photon budget often results in severely shortened single-molecule observation times. Finally, many microscope configurations are challenged when imaging weak signals from single- molecules, especially due to high background in crowded cellular specimens. Thus, although promising, the full potential of single-molecule/super-resolution methods for transforming our molecular understanding of biological processes has yet to be realized. To fill critical technical gaps, new optimized microscope configurations are needed - that can operate at the limits of spatiotemporal resolution while maximizing the information content of dim fluorescence signals. We hypothesize that this goal can be achieved through novel combinations of 3D interferometry, targeted fluorescence switching, while further harnessing emerging photon-efficient algorithms to increase resolution as well as prolong total observation times. Based on these ideas we propose to develop novel super-resolution and single-molecule fluorescence imaging tools, focusing on two specific aims: (1) To extend the spatiotemporal scales of localization-based single-molecule imaging and tracking to 1 nanometer isotropic 3D resolution and to ~1,000 data-point in vivo observation traces at down to (sub)millisecond sampling rates; (2) To achieve real-time single-molecule detection sensitivity in addressable 3D volumes, at presence of micro- Molar background concentrations, and inside highly crowded intracellular environments. The new techniques will significantly increase our abilities to interrogate dynamic biological processes with molecular detail, thus having widespread and immediate impact across biomedical disciplines.
抽象的 对生物过程和机制有更全面的了解 健康和疾病的基础需要更好地整合多个领域的信息 长度和时间尺度。超分辨率显微镜和单分子方法 成为扩展现场空间分辨率和检测灵敏度的有效工具 生物成像。然而,当前最先进的技术通常只能实现有限的 3D 分辨率妨碍了分子尺度上空间组织的可视化。而且 平衡时间和空间分辨率之间的权衡,同时以有限的操作 光子预算通常会导致单分子观察时间严重缩短。最后, 当对来自单通道的微弱信号进行成像时,许多显微镜配置都面临着挑战。 分子,特别是由于拥挤的细胞样本中的高背景。因此,虽然 有前途的是,单分子/超分辨率方法的全部潜力可以改变我们的 对生物过程的分子理解尚未实现。填补关键技术 间隙,需要新的优化显微镜配置 - 可以在极限下运行 时空分辨率,同时最大化暗淡荧光信号的信息内容。 我们假设这一目标可以通过 3D 干涉测量的新颖组合来实现, 有针对性的荧光切换,同时进一步利用新兴的光子高效算法 提高分辨率并延长总观察时间。基于这些想法我们 建议开发新型超分辨率和单分子荧光成像工具, 重点关注两个具体目标:(1)扩展基于本地化的时空尺度 单分子成像和跟踪可达 1 纳米各向同性 3D 分辨率和 ~1,000 数据点体内观察轨迹的采样率低至(亚)毫秒; (2) 实现 在存在微量元素的情况下,可寻址 3D 体积中的实时单分子检测灵敏度 摩尔背景浓度,以及高度拥挤的细胞内环境。这 新技术将显着提高我们探究动态生物的能力 具有分子细节的过程,从而对整个领域产生广泛而直接的影响 生物医学学科。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandros Pertsinidis其他文献

Alexandros Pertsinidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandros Pertsinidis', 18)}}的其他基金

Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
  • 批准号:
    10343329
  • 财政年份:
    2022
  • 资助金额:
    $ 22.45万
  • 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10707375
  • 财政年份:
    2022
  • 资助金额:
    $ 22.45万
  • 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10510195
  • 财政年份:
    2022
  • 资助金额:
    $ 22.45万
  • 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
  • 批准号:
    10672880
  • 财政年份:
    2022
  • 资助金额:
    $ 22.45万
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10245100
  • 财政年份:
    2019
  • 资助金额:
    $ 22.45万
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10022131
  • 财政年份:
    2019
  • 资助金额:
    $ 22.45万
  • 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
  • 批准号:
    9809804
  • 财政年份:
    2019
  • 资助金额:
    $ 22.45万
  • 项目类别:
Understanding Gene Transcription from First-Principles: A single-molecule study
从第一原理理解基因转录:单分子研究
  • 批准号:
    8355484
  • 财政年份:
    2012
  • 资助金额:
    $ 22.45万
  • 项目类别:

相似国自然基金

基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
  • 批准号:
    72271152
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目

相似海外基金

Orientation Processing Deficits in Amblyopia: Neural Bases to Functional Implications
弱视的定向处理缺陷:神经基础到功能意义
  • 批准号:
    10649039
  • 财政年份:
    2023
  • 资助金额:
    $ 22.45万
  • 项目类别:
Unraveling the Neural Bases of Body Schema
揭开身体图式的神经基础
  • 批准号:
    10696706
  • 财政年份:
    2023
  • 资助金额:
    $ 22.45万
  • 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 22.45万
  • 项目类别:
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 22.45万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 22.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了