Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
基本信息
- 批准号:10797460
- 负责人:
- 金额:$ 31.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnalysis of VarianceAreaBindingBinding SitesBiologyBiomedical EngineeringBiotechnologyChemical EngineeringComputer Vision SystemsDNADNA BindingDNA-Protein InteractionDataDetectionDevelopmentDiagnosisDiffusionDiseaseEducationEngineeringFaceFutureGenetic TranscriptionGenome ScanGraphHandImageInterdisciplinary StudyInterventionInvestigationLocationMarketingMathematicsMethodsNational Institute of General Medical SciencesPhysiologicalPopulation HeterogeneityProcessProductionProteinsPsychological reinforcementReactionRegulator GenesResearchResolutionRobotScanning Probe MicroscopesScienceSystemTechniquesTechnologyTestingTimeTranslationsVisualizationWorkanalytical methodautomated algorithmcommercializationdeep learning algorithmdetection methodgenome-wide analysishigh resolution imagingimaging approachimaging modalitylearning algorithmlearning strategymachine learning frameworkmachine learning methodmacromoleculemathematical methodsnew technologynovelprotein protein interactionprototyperesponsesingle moleculeskillsstatisticssuperresolution imagingthree dimensional structuretoolwhole genome
项目摘要
Quantifying TF-DNA binding, including locations, distributions, and binding mechanism is an important
first step toward the understanding of gene regulatory machinery. In this proposal, we will develop an
atomic force microscope (AFM)-based single-molecule imaging method for the detection and
quantification of TF-DNA binding. The new technique brings the methods of mathematics and statistics to
bear on the technological breakthrough in an experimental system. This new technology is inherently
different from classical single-molecule imaging approaches, which solely rely on the technician’s
experimental skills. Combining mathematics, statistics, bioengineering, and chemical engineering, this
proposal creates a perfect platform for multidisciplinary research by merging analytics, biology, and
engineering. We see this as a translational effort of what started as a lab-bench discovery into a new
biotechnology tool, as the proposed machine learning (ML) methods combined with robot hands pave a
revolutionary path to the massive production and fully automated system for precise TF-DNA imaging.
Analytically, we face three challenges: construction of high-throughput images, prediction of TF binding
region, and force decomposition to recover the binding mechanism. To attack these problems, we will (1)
develop smoothing spline diffusion and annealing process for image super-resolution, (2) develop novel
reinforcement learning algorithm for automatic TFBSs searching, and (3) develop graph ANOVA method
to compare the TF-DNA binding mechanism. Our efforts in these areas should lead to (1) fundamental
advances in image super-resolution and reinforcement learning algorithms which enjoy both algorithm
simplicity and theoretical rigorous; (2) development and refinement of the technology for the rapid and
precise genome-wide identification and quantification of TF-DNA binding sites using AFM technology; (3)
visualization of not only TF-DNA binding sequence and location but also 3-D structures; (4) investigation
of TF-DNA interactions under nearly physiological conditions by controlling the reaction conditions
experimentally; and most importantly; (5) prototyping of a fully automatic system for potential technology
translation. This system permits accurate detection of TF-DNA binding with a rapid response that requires
essentially no user intervention for field deployment and data capture.
量化 TF-DNA 结合(包括位置、分布和结合机制)是一项重要的工作
理解基因调控机制的第一步。在本提案中,我们将开发一种基因调控机制。
基于原子力显微镜(AFM)的单分子成像方法用于检测和
新技术将数学和统计学方法引入到 TF-DNA 结合的定量分析中。
这项新技术本质上是在一个实验系统上进行技术突破。
与传统的单分子成像方法不同,传统的单分子成像方法仅依赖于技术人员的
结合数学、统计学、生物工程和化学工程,这
该提案通过融合分析学、生物学和
我们认为这是从实验室发现到新发现的转化努力。
生物技术工具,作为所提出的机器学习(ML)方法与机器人手相结合铺平了道路
实现精确 TF-DNA 成像的大规模生产和全自动系统的革命性途径。
从分析上来说,我们面临三个挑战:高通量图像的构建、TF结合的预测
为了解决这些问题,我们将(1)。
开发用于图像超分辨率的平滑样条扩散和退火过程,(2)开发新颖的
用于自动 TFBS 搜索的强化学习算法,以及(3)开发图方差分析方法
比较 TF-DNA 结合机制,我们在这些领域的努力应该导致 (1) 根本性的结果。
图像超分辨率和强化学习算法的进步,这两种算法都享有盛誉
(2) 技术的发展和完善,以实现快速、准确的应用。
(3)利用AFM技术对TF-DNA结合位点进行全基因组精确鉴定和定量;
不仅可以可视化 TF-DNA 结合序列和位置,还可以可视化 3-D 结构;(4) 研究
通过控制反应条件在接近生理条件下的 TF-DNA 相互作用
(5)潜在技术的全自动系统原型制作
该系统可以准确检测 TF-DNA 结合,并做出快速响应。
现场部署和数据捕获基本上无需用户干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenxuan Zhong其他文献
Wenxuan Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenxuan Zhong', 18)}}的其他基金
Novel statistical tools for cell line specific epigenetic analysis
用于细胞系特异性表观遗传分析的新型统计工具
- 批准号:
8825711 - 财政年份:2014
- 资助金额:
$ 31.73万 - 项目类别:
Novel statistical tools for cell line specific epigenetic analysis
用于细胞系特异性表观遗传分析的新型统计工具
- 批准号:
9317504 - 财政年份:2014
- 资助金额:
$ 31.73万 - 项目类别:
Novel statistical tools for cell line specific epigenetic analysis
用于细胞系特异性表观遗传分析的新型统计工具
- 批准号:
9135495 - 财政年份:2014
- 资助金额:
$ 31.73万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Progression and differential control of postural and kinetic tremor with deep brain stimulation
深部脑刺激对姿势性和运动性震颤的进展和差异控制
- 批准号:
10536431 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别:
Combined Experimental and Analytical Study of the Effects of Zone V Extensor Tendon Injuries on Hand Function
V区伸肌腱损伤对手功能影响的实验与分析相结合的研究
- 批准号:
10440853 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别:
Asymmetric Walking Protocol for Optimal Post-ACL Reconstruction Rehabilitation
用于最佳 ACL 重建后康复的不对称行走方案
- 批准号:
10693894 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别:
Combined Experimental and Analytical Study of the Effects of Zone V Extensor Tendon Injuries on Hand Function
V区伸肌腱损伤对手功能影响的实验与分析相结合的研究
- 批准号:
10599982 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别: