Studying chromosome function using chemical biology
利用化学生物学研究染色体功能
基本信息
- 批准号:8161780
- 负责人:
- 金额:$ 41.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAlkynesBenzophenonesBindingBiochemicalBiochemistryBiologicalBiologyCell divisionCell physiologyCellsCellular biologyChemicalsChemistryChromatinChromosome SegregationChromosomesCodeComplexDNADNA SequenceDNA biosynthesisDataDiseaseEnsureEpigenetic ProcessGene ExpressionGenetic TranscriptionGenomeGoalsHistone CodeHistone H3HistonesHumanKnowledgeLeadLinkMalignant NeoplasmsMass Spectrum AnalysisMediatingMediator of activation proteinMethodologyMethodsMethylationMicroscopyMitosisModificationNamesNormal CellPeptidesPharmaceutical PreparationsPhosphorylationPlayPost-Translational Protein ProcessingProcessProtein BindingProteinsProteomicsPublishingReaderReadingRecruitment ActivityReportingResearchResearch ProposalsResolutionSiteStreamTailTestingTherapeuticWorkWritingaurora kinasebasecancer cellcell typechromatin proteincrosslinkdesignhistone modificationimprovedinsightnovel therapeuticsprotein functionprotein profilingprotein protein interactionrepairedsegregationtraittransmission processubiquitin ligase
项目摘要
DESCRIPTION (provided by applicant): The fact that DNA is wrapped around a spool, comprised of histones, is believed to influence essentially all aspects of chromosome biology, including DNA replication, repair after damage and segregation. Diverse post-translational modifications (e.g. acetylation, methylation, and phosphorylation) of histones are known and are believed to play key roles in regulating a wide swath of biology linked to our genomes. Based on observed antagonisms and synergies between different histone post-translational modifications (or 'marks') in recruiting proteins to chromosomes, it has been proposed that these 'marks' form a 'code' for regulating chromosome function. It has also been suggested that this 'code' may provide a basis of epigenetic inheritance, which is the transmission of cellular traits that are not encoded at the level of DNA sequence. Many of the proteins that post-translationally modify histones (i.e. 'write' or 'erase' the 'code') have been characterized. In contrast, our knowledge of the proteins that recognize (or 'read') histone post-translational modifications remains incomplete. The difficulty in identifying these effector-proteins (or 'readers') is, in large part, due to the histone modifications being sub-stoichiometric, dynamic, and mediators of weak interactions. With the goal to fill this knowledge gap, we have recently reported an approach, which combines photo-chemical crosslinking with bio-orthogonal chemistry, to 'capture' proteins that bind histone H3 trimethylated at Lys-4. We now combine this method with state-of-the-art mass spectrometry to develop a robust chemical proteomics approach to profile 'readers' of histone methylation 'marks.' Our ongoing work suggests that our approach is general and can be used to analyze these post-translational modification-dependent protein-protein interactions in any human cell type (e.g. normal or cancer), cell state (e.g. mitosis) or context (e.g. drug-treated). Based on these and other unpublished preliminary data, we propose to: (i) comprehensively profile proteins that recognize methylation 'marks' on histones, (ii) characterize how proteins that recognize methylation 'marks' control down-stream biology, and (iii) examine how interplay between histone phosphorylation and methylation ensures error-free chromosome segregation during cell division. We combine chemistry, biochemistry, high-resolution microscopy and cell biological approaches to gain insight into fundamental cellular processes. Our findings may reveal how improper 'reading' of histone post-translational modifications can result in disease. In the long-term, our findings may also provide a basis for developing new therapeutic strategies that target 'readers' of histone methylation 'marks'.
PUBLIC HEALTH RELEVANCE: The goals of the proposed research are to develop and apply a chemical proteomics approach to comprehensively profile proteins that recognize histones with particular post-translational modifications (or 'marks'). By characterizing these proteins, we will gain insight into how chromosome function is regulated in normal cells and how diseases may arise when the 'reading' of these histone 'marks' goes awry.
描述(由申请人提供):DNA 缠绕在由组蛋白组成的线轴上这一事实被认为基本上影响染色体生物学的所有方面,包括 DNA 复制、损伤后修复和分离。组蛋白的多种翻译后修饰(例如乙酰化、甲基化和磷酸化)是已知的,并且被认为在调节与我们的基因组相关的广泛生物学方面发挥着关键作用。基于观察到的不同组蛋白翻译后修饰(或“标记”)在将蛋白质募集至染色体时的拮抗和协同作用,有人提出这些“标记”形成调节染色体功能的“代码”。还有人提出,这种“密码”可能提供表观遗传的基础,表观遗传是指不在 DNA 序列水平上编码的细胞特征的传递。许多翻译后修饰组蛋白(即“写入”或“擦除”“代码”)的蛋白质已被表征。相比之下,我们对识别(或“读取”)组蛋白翻译后修饰的蛋白质的了解仍然不完整。识别这些效应蛋白(或“阅读器”)的困难在很大程度上是由于组蛋白修饰是亚化学计量的、动态的和弱相互作用的介体。为了填补这一知识空白,我们最近报道了一种将光化学交联与生物正交化学相结合的方法,以“捕获”结合在 Lys-4 位点三甲基化的组蛋白 H3 的蛋白质。现在,我们将这种方法与最先进的质谱分析相结合,开发出一种强大的化学蛋白质组学方法来分析组蛋白甲基化“标记”的“读者”。我们正在进行的工作表明,我们的方法是通用的,可用于分析任何人类细胞类型(例如正常细胞或癌症)、细胞状态(例如有丝分裂)或环境(例如药物)中的这些翻译后修饰依赖性蛋白质-蛋白质相互作用。处理)。基于这些和其他未发表的初步数据,我们建议:(i)全面分析识别组蛋白上甲基化“标记”的蛋白质,(ii)描述识别甲基化“标记”的蛋白质如何控制下游生物学,以及(iii)研究组蛋白磷酸化和甲基化之间的相互作用如何确保细胞分裂过程中染色体的无差错分离。我们结合化学、生物化学、高分辨率显微镜和细胞生物学方法来深入了解基本的细胞过程。我们的研究结果可能揭示组蛋白翻译后修饰的不正确“解读”如何导致疾病。从长远来看,我们的研究结果还可能为开发针对组蛋白甲基化“标记”的“读者”的新治疗策略提供基础。
公共健康相关性:拟议研究的目标是开发和应用化学蛋白质组学方法来全面分析识别具有特定翻译后修饰(或“标记”)的组蛋白的蛋白质。通过表征这些蛋白质,我们将深入了解正常细胞中染色体功能的调节方式,以及当这些组蛋白“标记”的“读取”出现错误时如何可能出现疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TARUN M. KAPOOR其他文献
TARUN M. KAPOOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TARUN M. KAPOOR', 18)}}的其他基金
Chemical Biology of Cell Division - Revision - 2
细胞分裂的化学生物学 - 修订版 - 2
- 批准号:
10578031 - 财政年份:2019
- 资助金额:
$ 41.47万 - 项目类别:
Studying chromosome function using chemical biology
利用化学生物学研究染色体功能
- 批准号:
8332754 - 财政年份:2011
- 资助金额:
$ 41.47万 - 项目类别:
Studying chromosome function using chemical biology
利用化学生物学研究染色体功能
- 批准号:
8886346 - 财政年份:2011
- 资助金额:
$ 41.47万 - 项目类别:
Studying chromosome function using chemical biology
利用化学生物学研究染色体功能
- 批准号:
8648790 - 财政年份:2011
- 资助金额:
$ 41.47万 - 项目类别:
Studying chromosome function using chemical biology
利用化学生物学研究染色体功能
- 批准号:
8464750 - 财政年份:2011
- 资助金额:
$ 41.47万 - 项目类别:
ELUCIDATION OF SUBSTRATES & SUBSTRATE SPECIFICITY OF PROTEIN PHOSPHATASE 2
底物的阐明
- 批准号:
8361563 - 财政年份:2011
- 资助金额:
$ 41.47万 - 项目类别:
相似国自然基金
氢甲酰化-有机催化接力策略介导的炔烃不对称多官能化及环化反应研究
- 批准号:22371217
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
炔烃叁键的选择性“断键/插碳”反应研究
- 批准号:22361010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
低价钴-氢催化烯烃/炔烃氢烷基化
- 批准号:22371273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
炔烃参与的新型不对称去芳构化反应研究
- 批准号:22371254
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单一催化体系促进的炔烃不对称氢官能化构筑手性醇/胺及其应用
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
New Chemical Process to Selectively Functionalize Pyridines, Diazines and Pharmaceuticals
选择性功能化吡啶、二嗪和药物的新化学工艺
- 批准号:
10733969 - 财政年份:2018
- 资助金额:
$ 41.47万 - 项目类别:
Photoprobes for identifying potential anti-depressant and anti-anxiety medication
用于识别潜在抗抑郁和抗焦虑药物的光探针
- 批准号:
8511056 - 财政年份:2013
- 资助金额:
$ 41.47万 - 项目类别:
Photoprobes for identifying potential anti-depressant and anti-anxiety medication
用于识别潜在抗抑郁和抗焦虑药物的光探针
- 批准号:
8653024 - 财政年份:2013
- 资助金额:
$ 41.47万 - 项目类别: