Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
基本信息
- 批准号:8087592
- 负责人:
- 金额:$ 59.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-25 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAddressAffectiveAlgorithmsAnteriorAtlasesBase of the BrainBehaviorBrainBrain regionCigaretteClassificationClinicalCocaineCognitiveComplexComputer-Assisted Image AnalysisComputing MethodologiesDataData CollectionData SetDatabasesDetectionDevelopmentDevicesDimensionsDiscriminationDrug abuseDrug userElectroencephalogramElectroencephalographyElectrophysiology (science)EpilepsyFeedbackFour-dimensionalFrequenciesFunctional Magnetic Resonance ImagingGalvanic Skin ResponseGenerationsGoalsHealthHealthcareImageImaging technologyImpulsivityInterventionLearningLocationMachine LearningMagnetic Resonance ImagingMapsMeasuresMedicalMethamphetamineMethodsModelingPatientsPatternPharmaceutical PreparationsPhasePhysiologicalProxyPsyche structureReporterReportingResearchRestRunningScalp structureSchizophreniaShort-Term MemorySignal TransductionSourceStimulusStudy SubjectTechnologyTestingTimeTraumatic Brain InjuryWorkabstractingaddictionbaseblindchronic paincingulate cortexcognitive controlcravingdata spacedesigndiscountingdrug of abuseeffective interventionhuman subjectimprovedindependent component analysisinnovationinstrumentinstrumentationinterestmethod developmentmind controlneurofeedbackneuroimagingnoveloperationprogramspublic health relevancerelating to nervous systemresearch studyresponsesymposiumtooltrendvirtualvolunteer
项目摘要
DESCRIPTION (provided by applicant): Neurofeedback by real time functional MRI (rt-fMRI) has potential for addiction research and treatment that will be realized only if the feedback given the subject is related meaningfully to the cognitive states that must be controlled. The mental operations of the brain are too distributed to be represented by the raw rt-fMRI signal in any one brain region or small group of regions. Our aims are to: 1) Use computational machine learning to rapidly detect patterned activation in the rt-fMRI signal that better expresses cognitive state; 2) augment these data with concurrently-collected electroencephalographic (EEG) data; 3) develop an atlas of brain data that identifies brain patterns with cognitive states relevant to addiction and drug abuse research and 4) to explore rt-fMRI neurofeedback using this rt-fMRI/EEG machine learning method. Our approach will be to first create rapid algorithms for pattern matching that are fast compared with the imaging, thereby allowing "real-time" application. To do so we will select features from the images that express the differences among state concisely (more technically, we will use a method known as independent components analysis to reduce the data dimensionality.) We will similarly condense the EEG features by studying them by the location of their sources within the brain, and by examining the frequencies that they contain. We will run experiments on volunteers designed to help us see their tendency to make impulsive choices - which is known to relate to their likelihood to become drug users, as well as experiments that track changes in their brain as they control their craving urges. For these studies we will look at heavy cigarette users. Cigarette use on its own is a serious health burden to the nation, and it is also an excellent model for addiction more generally, as it is known to have many neural features in common with use of other drugs of abuse, such as cocaine and methamphetamine. This is a phased innovation proposal. The first phase will be focused on the developments of the rt-fMRI analysis and instrumentation technology. On its successful completion, based on specific milestones, we will move to the more applied work with human subjects.
PUBLIC HEALTH RELEVANCE: Our research aims to develop and characterize a means of rapidly detecting brain states relevant to addiction research through the use of magnetic resonance imaging and electroencephalography. We are interested specifically in states and markers of impulsivity and cigarette craving. Our goal ultimately is to have a tool that can be used in the context of neurofeedback, allowing human subject or patient to receive an indication of activity in their brains associated with these states and to enable them to learn to control these cognitive/affective states by controlling the brain activity.
描述(由申请人提供):实时功能MRI(RT-FMRI)的神经反馈具有成瘾研究和治疗的潜力,仅当给予受试者的反馈与必须控制的认知状态有意义相关时,才能实现。大脑的心理操作过于分布,无法在任何一个大脑区域或小组区域中由原始RT-FMRI信号表示。我们的目的是:1)使用计算机学习在RT-FMRI信号中快速检测到更好地表达认知状态的模式激活; 2)通过同时收集的脑电图(EEG)数据来增强这些数据; 3)开发一个大脑数据的地图集,该地图集使用与成瘾和药物滥用研究相关的认知状态的大脑模式; 4)使用这种RT-FMRI/EEG机器学习方法来探索RT-FMRI神经反馈。我们的方法是首先创建与成像相比快速匹配的快速算法,从而允许“实时”应用程序。为此,我们将从图像中选择表达状态之间差异的特征(从技术上讲,我们将使用称为独立组件分析的方法来降低数据维度。)我们将通过通过其在大脑中的位置进行研究,并检查其所包含的频率,从而通过研究它们的位置来凝结EEG特征。我们将对旨在帮助我们看到他们做出冲动选择的倾向的志愿者进行实验 - 众所周知,这与他们成为吸毒者的可能性有关,以及在控制自己的渴望时跟踪大脑变化的实验。对于这些研究,我们将研究大型香烟使用者。香烟本身是对国家的严重健康负担,它也是更普遍的成瘾模型,因为众所周知,它具有许多共同的神经特征,即使用其他滥用药物,例如可卡因和甲基苯丙胺。这是一个分阶段的创新建议。第一阶段将集中于RT-FMRI分析和仪器技术的发展。在成功完成基于特定里程碑的成功完成后,我们将与人类受试者进行更应用的工作。
公共卫生相关性:我们的研究旨在通过使用磁共振成像和脑电图来发展和表征一种快速检测与成瘾研究相关的大脑状态的方法。我们对冲动性和素描的渴望的州和标记特别感兴趣。我们的目标最终是拥有一个可以在神经反馈背景下使用的工具,使人类或患者能够在其大脑中获得与这些状态相关的活动的指示,并使他们能够通过控制大脑活动来学习控制这些认知/情感状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Steven Cohen其他文献
Mark Steven Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Steven Cohen', 18)}}的其他基金
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8485686 - 财政年份:2012
- 资助金额:
$ 59.34万 - 项目类别:
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8386518 - 财政年份:2012
- 资助金额:
$ 59.34万 - 项目类别:
NANOCARRIER BASED INTRALYMPHATIC IMAGING AND THERAPY FOR MELANOMA
基于纳米载体的淋巴内成像和黑色素瘤治疗
- 批准号:
7959404 - 财政年份:2009
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8104246 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7588944 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7690912 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8288263 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
FMRI OF INVERTED VISION: PLASTICITY OF VISUOSPATIAL MAPS
倒置视觉的 FMRI:视觉空间图的可塑性
- 批准号:
7606742 - 财政年份:2007
- 资助金额:
$ 59.34万 - 项目类别:
Comprehensive training in Neuroimaging Fundamentals and Applications
神经影像学基础和应用综合培训
- 批准号:
7488879 - 财政年份:2006
- 资助金额:
$ 59.34万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Circuit control of motivation to take and seek alcohol
饮酒和寻求酒精动机的电路控制
- 批准号:
10753712 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Efficacy and implementation of exercise-based smoking cessation treatment for adults with high anxiety sensitivity
以运动为基础的戒烟治疗对高焦虑敏感性成人的疗效和实施
- 批准号:
10660767 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Glutamatergic plasticity that drives cannabinoid withdrawal and craving
谷氨酸可塑性导致大麻素戒断和渴望
- 批准号:
10743526 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Mindfulness-based ecological momentary intervention for smoking cessation among cancer survivors
基于正念的生态瞬时干预对癌症幸存者戒烟的影响
- 批准号:
10590358 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别:
Regulation of alcohol-induced social disturbances by lateral habenula serotonin receptors
外侧缰核血清素受体调节酒精引起的社交障碍
- 批准号:
10664291 - 财政年份:2023
- 资助金额:
$ 59.34万 - 项目类别: