REAL TIME DETECTION OF COGNITIVE STATES
实时检测认知状态
基本信息
- 批准号:8171195
- 负责人:
- 金额:$ 0.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectiveAlgorithmsAtlasesBrainBrain regionCigaretteCocaineCognitiveComputer Retrieval of Information on Scientific Projects DatabaseDataDetectionDevelopmentDrug abuseDrug userElectroencephalographyFeedbackFrequenciesFunctional Magnetic Resonance ImagingFundingGoalsGrantHealthImageImpulsivityInstitutionLearningLocationMachine LearningMagnetic Resonance ImagingMethamphetamineMethodsModelingPatientsPatternPhasePsyche structureResearchResearch PersonnelResourcesRunningSignal TransductionSourceTechnologyTimeUnited States National Institutes of HealthWorkaddictionbasecognitive controlcravingdesigndrug of abusehuman subjectindependent component analysisinnovationinstrumentationinterestmind controlneurofeedbackoperationpublic health relevancerelating to nervous systemresearch studytoolvolunteer
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Neurofeedback by real time functional MRI (rt-fMRI) has potential for addiction research and treatment that will be realized only if the feedback given the subject is related meaningfully to the cognitive states that must be controlled. The mental operations of the brain are too distributed to be represented by the raw rt-fMRI signal in any one brain region or small group of regions. Our aims are to: 1) Use computational machine learning to rapidly detect patterned activation in the rt-fMRI signal that better expresses cognitive state; 2) augment these data with concurrently-collected electroencephalographic (EEG) data; 3) develop an atlas of brain data that identifies brain patterns with cognitive states relevant to addiction and drug abuse research and 4) to explore rt-fMRI neurofeedback using this rt-fMRI/EEG machine learning method. Our approach will be to first create rapid algorithms for pattern matching that are fast compared with the imaging, thereby allowing "real-time" application. To do so we will select features from the images that express the differences among state concisely (more technically, we will use a method known as independent components analysis to reduce the data dimensionality.) We will similarly condense the EEG features by studying them by the location of their sources within the brain, and by examining the frequencies that they contain. We will run experiments on volunteers designed to help us see their tendency to make impulsive choices - which is known to relate to their likelihood to become drug users, as well as experiments that track changes in their brain as they control their craving urges. For these studies we will look at heavy cigarette users. Cigarette use on its own is a serious health burden to the nation, and it is also an excellent model for addiction more generally, as it is known to have many neural features in common with use of other drugs of abuse, such as cocaine and methamphetamine. This is a phased innovation proposal. The first phase will be focused on the developments of the rt-fMRI analysis and instrumentation technology. On its successful completion, based on specific milestones, we will move to the more applied work with human subjects. PUBLIC HEALTH RELEVANCE: Our research aims to develop and characterize a means of rapidly detecting brain states relevant to addiction research through the use of magnetic resonance imaging and electroencephalography. We are interested specifically in states and markers of impulsivity and cigarette craving. Our goal ultimately is to have a tool that can be used in the context of neurofeedback, allowing human subject or patient to receive an indication of activity in their brains associated with these states and to enable them to learn to control these cognitive/affective states by controlling the brain activity.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目及
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
对于中心来说,它不一定是研究者的机构。
实时功能 MRI (rt-fMRI) 的神经反馈具有用于成瘾研究和治疗的潜力,只有当给予受试者的反馈与必须控制的认知状态有意义相关时,这种潜力才能实现。大脑的心理操作过于分散,无法用任何一个大脑区域或一小群区域的原始 rt-fMRI 信号来表示。我们的目标是:1)使用计算机器学习快速检测 rt-fMRI 信号中的模式激活,以更好地表达认知状态; 2)用同时收集的脑电图(EEG)数据来增强这些数据; 3) 开发大脑数据图集,识别与成瘾和药物滥用研究相关的认知状态的大脑模式,4) 使用这种 rt-fMRI/EEG 机器学习方法探索 rt-fMRI 神经反馈。我们的方法是首先创建比成像更快的模式匹配快速算法,从而允许“实时”应用。为此,我们将从图像中选择能够简明地表达状态差异的特征(更技术地说,我们将使用一种称为独立成分分析的方法来降低数据维度。)我们将类似地通过以下方式研究脑电图特征来浓缩它们:通过检查它们所包含的频率来确定它们在大脑中的来源位置。我们将对志愿者进行实验,旨在帮助我们了解他们做出冲动选择的倾向(众所周知,这与他们成为吸毒者的可能性有关),以及跟踪他们在控制渴望冲动时大脑变化的实验。在这些研究中,我们将关注大量吸烟者。吸烟本身对国家来说是一个严重的健康负担,而且它也是更普遍的成瘾的一个很好的模型,因为众所周知,它与使用其他滥用药物(如可卡因和甲基苯丙胺)有许多共同的神经特征。这是一个分阶段的创新提案。第一阶段将重点关注 rt-fMRI 分析和仪器技术的发展。在其成功完成后,基于具体的里程碑,我们将转向针对人类受试者的更多应用性工作。公共健康相关性:我们的研究旨在开发和表征一种通过使用磁共振成像和脑电图快速检测与成瘾研究相关的大脑状态的方法。我们对冲动和吸烟渴望的状态和标志特别感兴趣。我们的最终目标是拥有一种可在神经反馈背景下使用的工具,使人类受试者或患者能够接收与这些状态相关的大脑活动的指示,并使他们能够学会通过以下方式控制这些认知/情感状态:控制大脑活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Steven Cohen其他文献
Mark Steven Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Steven Cohen', 18)}}的其他基金
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8485686 - 财政年份:2012
- 资助金额:
$ 0.3万 - 项目类别:
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8386518 - 财政年份:2012
- 资助金额:
$ 0.3万 - 项目类别:
NANOCARRIER BASED INTRALYMPHATIC IMAGING AND THERAPY FOR MELANOMA
基于纳米载体的淋巴内成像和黑色素瘤治疗
- 批准号:
7959404 - 财政年份:2009
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8087592 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8104246 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7588944 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7690912 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8288263 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
FMRI OF INVERTED VISION: PLASTICITY OF VISUOSPATIAL MAPS
倒置视觉的 FMRI:视觉空间图的可塑性
- 批准号:
7606742 - 财政年份:2007
- 资助金额:
$ 0.3万 - 项目类别:
Comprehensive Training in Neuroimaging Fundamentals and Applications
神经影像学基础和应用综合培训
- 批准号:
8536780 - 财政年份:2006
- 资助金额:
$ 0.3万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Mapping Neural Circuit Activity Mediating MDMA's Prosocial Effect
绘制调节 MDMA 亲社会效应的神经回路活动
- 批准号:
10659760 - 财政年份:2023
- 资助金额:
$ 0.3万 - 项目类别:
Infrastructure for hyperaligning fMRI data and estimating functional topographies
用于超对齐功能磁共振成像数据和估计功能拓扑的基础设施
- 批准号:
10689268 - 财政年份:2022
- 资助金额:
$ 0.3万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10391136 - 财政年份:2022
- 资助金额:
$ 0.3万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10548825 - 财政年份:2022
- 资助金额:
$ 0.3万 - 项目类别:
Cerebellar Structure and Function Studies in Very Early Abstinence
早期禁欲中的小脑结构和功能研究
- 批准号:
9100604 - 财政年份:2015
- 资助金额:
$ 0.3万 - 项目类别: