Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
基本信息
- 批准号:10021668
- 负责人:
- 金额:$ 35.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAmino AcidsArrhythmiaBehaviorBindingCardiacCell Signaling ProcessChemicalsCommunicable DiseasesCoupledCouplingDataDiseaseDistalDrug TargetingEventEvolutionExhibitsFreezingFrequenciesGrantHealthHeartHumanHydration statusInvestigationIon ChannelIonsLaboratoriesLengthLifeLigand BindingLigandsLong QT SyndromeMalignant NeoplasmsMeasurementMediatingMedicalMembraneMembrane PotentialsMethodsModelingMolecularMolecular ConformationMutagenesisMutationNatureNervous System PhysiologyNervous system structureNeuronsParticipantPharmaceutical PreparationsPhysiologic pulsePhysiologicalPlayPotassium ChannelProcessPropertyProtein RegionRegulationRegulatory ElementRestRoleSignal TransductionSiteStructureStudy modelsSyndromeSystemTestingThermodynamicsTimeWorkbasedesignexperienceexperimental studyextracellularhuman pathogeninsightmutantnanosecondpotassium ionreceptorresponsesensorsolid state nuclear magnetic resonancetool
项目摘要
Abstract
Potassium channels control numerous signaling processes for humans and pathogens. Essentially all
characterized K+ channels inactivate spontaneously after opening, due to a transmembrane allosteric
process that acts to control mean open time. Inactivation modulates function for many important channels
and drug targets: for example, neurons use K+ channel inactivation to modulate their firing frequency, and
inactivation in the channels of the human heart has strong effects on heart timing. Our recent work provided
evidence that the molecular basis of C type inactivation in KcsA is transmembrane allosteric coupling, where
opening of the intracellular activation gate causes the extracellular selectivity filter to lose its affinity for K+. We
showed that this transmembrane allosteric coupling is strong in the wild type channel in bilayers and absent in
several inactivation-less mutants. In the upcoming period we plan to delineate the mechanism for this
transmembrane allosteric control of channel activity. In our first aim, we will systematically identify residues that
participate in the mechanism, i.e. residues that “sense” and “couple” both binding phenomena and mediate the
allosteric response. We will implement an NMR chemical shift based strategy to identify likely candidates. To
confirm the key role of candidate sites, we will manipulate the strength of the coupling through mutation at
these sites. The functional hallmark of allostery, modulation of ligands’ affinities through binding of another,
distal ligand, will be probed by NMR to quantitatively assess the impact of mutation on coupling. In our second
aim, we will determine the structure of the Activated state and contrast key interactions involving the allosteric
participants in the Activated state vs the Deactivated (Resting) and Inactivated states, to test hypotheses about
the molecular basis for allostery. The Activated state is the only state that transmits ions, and is the key
metastable intermediate of allosteric response. The structure of the wild type activated channel in bilayers has
been elusive. In contrast to other kinds of studies, our SSNMR studies are done on hydrated, wild type
channels in bilayers; the pH and ion concentrations are freely varied. In the previous grant period, we identified
conditions for preparing the Activated state. In our third aim we will characterize dynamic exchange processes
in the Activated state in order to obtain insights into spontaneous Inactivation. We will use recently developed
rotating frame solid state NMR pulse sequences that allow measurement at numerous sites, minimizing
unwanted coherent evolution of the spins. We will contrast the conformational dynamics of the Activated state
in hydrated bilayers to other states of the system (Deactivated, Inactivated). By comparing the exchange
timescales and amplitudes to those expected from MD-based models of activation coupled inactivation we will
test a variety of mechanisms for allosteric inactivation of ion channels.
抽象的
钾通道控制着人类和病原体的众多信号传导过程。
由于跨膜变构,K+通道在打开后会自发失活
控制平均开放时间的过程调节许多重要通道的功能。
和药物靶点:例如,神经元利用 K+ 通道失活来调节其放电频率,以及
我们最近的研究表明,人类心脏通道的失活对心脏计时有很大影响。
有证据表明 KcsA 中 C 型失活的分子基础是跨膜变构偶联,其中
细胞内激活门的打开导致细胞外选择性过滤器失去对 K+ 的亲和力。
表明这种跨膜变构耦合在双层的野生型通道中很强,而在
在接下来的一段时间内,我们计划描述一些无失活突变体的机制。
通道活性的跨膜变构控制在我们的第一个目标中,我们将系统地识别残基
参与该机制,即“感知”和“耦合”结合现象并介导
我们将实施基于 NMR 化学位移的策略来识别可能的候选者。
确认候选位点的关键作用后,我们将通过突变来操纵耦合的强度
这些位点的功能标志,通过结合另一个配体的亲和力来调节,
在我们的第二个研究中,将通过 NMR 探测远端配体,以定量评估突变对偶联的影响。
目标,我们将确定激活状态的结构并对比涉及变构的关键相互作用
处于激活状态与停用(休息)和停用状态的参与者,以测试有关的假设
变构的分子基础 激活态是传输离子的唯一状态,也是关键。
双层中野生型激活通道的结构具有变构反应的亚稳态中间体。
与其他类型的研究相比,我们的 SSNMR 研究是在水合野生型上进行的。
双层中的通道;pH 值和离子浓度可以自由变化。
在我们的第三个目标中,我们将描述动态交换过程的特征。
为了深入了解自发失活,我们将使用最近开发的。
旋转框架固态核磁共振脉冲序列,允许在多个地点进行测量,最大限度地减少
我们将对比激活态的构象动力学。
通过比较交换,水合双层与系统的其他状态(失活、失活)。
时间尺度和振幅与基于 MD 的激活耦合失活模型的预期一致,我们将
测试离子通道变构失活的多种机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANN E MCDERMOTT其他文献
ANN E MCDERMOTT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANN E MCDERMOTT', 18)}}的其他基金
HIGH FIELD/HIGH FREQUENCY ESR FOR STUDYING DNP IN BIOMEMBRANES
用于研究生物膜中 DNP 的高场/高频 ESR
- 批准号:
8364114 - 财政年份:2011
- 资助金额:
$ 35.98万 - 项目类别:
DYNAMIC NUCLEAR POLARIZATION SOLID STATE NMR SPECTROMETER FOR BIOMOLECULAR STUDIE
用于生物分子研究的动态核偏振固态核磁共振波谱仪
- 批准号:
7839443 - 财政年份:2010
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
10659941 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
9117619 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
10224775 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
8760232 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
10460945 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Channels and Pumps by Solid State NMR
通过固态核磁共振研究通道和泵的结构和功能
- 批准号:
8325732 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Channels and Pumps by Solid State NMR
通过固态核磁共振研究通道和泵的结构和功能
- 批准号:
8142738 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
Structural and Functional Studies of Channels and Pumps by Solid State NMR
通过固态核磁共振研究通道和泵的结构和功能
- 批准号:
7941916 - 财政年份:2009
- 资助金额:
$ 35.98万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational Design from Cryo-EM Structures of High-Affinity Ryanodine Receptor Ligands Based on Natural Peptides
基于天然肽的高亲和力兰尼定受体配体的冷冻电镜结构的合理设计
- 批准号:
10729564 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
- 批准号:
10750627 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Advancing Development of Novel Immunotherapy for Chemotherapy-induced Peripheral Neuropathy (CIPN)
推进化疗引起的周围神经病变 (CIPN) 的新型免疫疗法的发展
- 批准号:
10588384 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
A novel genetic mutation reveals the molecular and cellular mechanisms of severe recurrent skin inflammation
一种新的基因突变揭示了严重复发性皮肤炎症的分子和细胞机制
- 批准号:
10679177 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别: