Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
基本信息
- 批准号:10750627
- 负责人:
- 金额:$ 69.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAffectAffinityAmino AcidsAntiviral AgentsBase SequenceBenchmarkingBindingBiophysicsCalibrationCapsidCapsid ProteinsChemicalsClinicalComplementCryoelectron MicroscopyDataDefectDevelopmentDrug resistanceDrug resistance pathwayEnvironmentFree EnergyGenetic EpistasisGoalsHIVHIV GenomeHIV IntegraseHIV Integrase InhibitorsHIV-1IntegraseKnowledgeLaboratoriesLeadLigand BindingLiquid substanceMachine LearningMapsMeasurementMethodsModelingMolecularMolecular ConformationMutationPathway interactionsPatternPersonsPharmaceutical PreparationsPhysicsPlayProteinsProtocols documentationPublicationsResistanceResolutionRoleSamplingSolventsStructureSystemTechniquesTherapeuticThermodynamicsTimeViralViral ProteinsWaterWorkantiretroviral therapybiophysical propertiesclinically relevantcomputer studiescomputerized toolsdrug discoverydrug resistance developmentexperienceexperimental studyfitnessimprovedinhibitorinterfacialmachine learning modelmolecular dynamicsmutantmutation screeningnext generationnovelnovel therapeuticsparticlepressurepublic health relevanceresponsesimulationstructural biologytool
项目摘要
ABSTRACT
There are ~40 million people world-wide infected by the Human Immunodeficiency Virus Type 1 (HIV-1,
commonly referred to as HIV). As currently there is no cure, antiretroviral treatment is the primary treatment
option. Yet antiretroviral treatment eventually fails over time due to the development of drug resistance. We will
develop new computational tools for forecasting HIV evolutionary trajectories under therapeutic selection
pressure leading to drug resistance, using high resolution all atom molecular dynamics simulations together with
physics-based machine learning models of sequence co-variation. The computational studies will be
complemented by structural, biophysical, and virological studies on two HIV protein multimeric targets: HIV
integrase (IN), and capsid (CA). The modeling and experiments will be employed in an iterative manner, with
the experimental results being used to validate, parameterize and improve the models; and the molecular
dynamics simulations used to guide new experiments and also to develop new tools for high resolution cryo-EM
refinement of multiple binding modes of HIV inhibitors and interfacial solvent. The common theme of our
proposed work is to provide structural interpretations for the observed fitness and resistance effects of mutations,
with the goal of developing holistic structure-function models which can be used to predict viral mutation
trajectories under drug selection pressure and give a mechanistic explanation for them. There are three specific
aims: (1) determine the physical mechanisms underlying mutational epistasis under varied drug environments,
and use MD simulations and virological data to parameterize drug specific landscapes for HIV IN and CA under
a novel theoretical framework; (2) use high resolution, large scale alchemical molecular dynamics free energy
simulations based on advanced sampling methods to analyze the effects of protein mutations on the stability of
protein-protein interfaces that constitute the intasome and the capsid particle assemblies; (3) determine the
molecular basis for multiple binding modes of inhibitors of HIV IN, and the role of solvation in the strong binding
of these inhibitors. These aims seek to achieve a molecular understanding of the cooperative effects (epistasis)
of multi-residue mutation patterns on the binding of inhibitors to their viral protein targets (IN, CA) and their effects
on the stability of the multimers (intasome and capsid particle). We anticipate that this work will lead to the
development of surveillance tools to forecast the response of viral systems to the selection pressure of antiviral
therapeutics.
抽象的
全球约有 4000 万人感染 1 型人类免疫缺陷病毒(HIV-1、
通常称为艾滋病毒)。由于目前尚无治愈方法,抗逆转录病毒治疗是主要治疗方法
选项。然而,随着时间的推移,由于耐药性的发展,抗逆转录病毒治疗最终会失败。我们将
开发新的计算工具来预测治疗选择下的艾滋病毒进化轨迹
压力导致耐药性,使用高分辨率全原子分子动力学模拟
基于物理的序列共变机器学习模型。计算研究将是
辅以针对两个 HIV 蛋白多聚体靶标的结构、生物物理和病毒学研究:HIV
整合酶 (IN) 和衣壳 (CA)。建模和实验将以迭代的方式进行,
实验结果用于验证、参数化和改进模型;和分子
动力学模拟用于指导新实验并开发用于高分辨率冷冻电镜的新工具
HIV抑制剂和界面溶剂的多种结合模式的细化。我们的共同主题
拟议的工作是为观察到的突变的适应性和抵抗力效应提供结构解释,
目标是开发可用于预测病毒突变的整体结构功能模型
药物选择压力下的轨迹并对其给出机械解释。具体有以下三点
目的:(1)确定不同药物环境下突变上位性的物理机制,
并使用 MD 模拟和病毒学数据参数化 HIV IN 和 CA 下的药物特异性景观
新颖的理论框架; (2)利用高分辨率、大规模炼金分子动力学自由能
基于先进采样方法的模拟,分析蛋白质突变对稳定性的影响
构成嵌体和衣壳颗粒组件的蛋白质-蛋白质界面; (3) 确定
HIV IN抑制剂多种结合模式的分子基础,以及溶剂化在强结合中的作用
这些抑制剂。这些目标寻求实现对协同效应(上位性)的分子理解
抑制剂与其病毒蛋白靶标(IN、CA)结合的多残基突变模式及其影响
多聚体(内体和衣壳颗粒)的稳定性。我们预计这项工作将导致
开发监测工具来预测病毒系统对抗病毒药物选择压力的反应
疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Levy其他文献
Ronald Levy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Levy', 18)}}的其他基金
Mapping Fitness and Free Energy Landscapes of Proteins
绘制蛋白质的健康度和自由能景观
- 批准号:
10402303 - 财政年份:2019
- 资助金额:
$ 69.11万 - 项目类别:
Mapping Fitness and Free Energy Landscapes of Proteins
绘制蛋白质的健康度和自由能景观
- 批准号:
9906947 - 财政年份:2019
- 资助金额:
$ 69.11万 - 项目类别:
Mapping Fitness and Free Energy Landscapes of Proteins
绘制蛋白质的健康度和自由能景观
- 批准号:
10609895 - 财政年份:2019
- 资助金额:
$ 69.11万 - 项目类别:
Mapping Fitness and Free Energy Landscapes of Proteins
绘制蛋白质的健康度和自由能景观
- 批准号:
10577469 - 财政年份:2019
- 资助金额:
$ 69.11万 - 项目类别:
Computer Cluster for Computational Biology and Biophysics
计算生物学和生物物理学计算机集群
- 批准号:
8826397 - 财政年份:2015
- 资助金额:
$ 69.11万 - 项目类别:
Evolution of antiviral resistance mutations and their biological and biophysical implications
抗病毒耐药突变的演变及其生物学和生物物理意义
- 批准号:
10242909 - 财政年份:2012
- 资助金额:
$ 69.11万 - 项目类别:
Evolution of antiviral resistance mutations and their biological and biophysical implications
抗病毒耐药突变的演变及其生物学和生物物理意义
- 批准号:
10363026 - 财政年份:2012
- 资助金额:
$ 69.11万 - 项目类别:
Computer Simulations of Protein Structure and Dynamics
蛋白质结构和动力学的计算机模拟
- 批准号:
7932626 - 财政年份:2009
- 资助金额:
$ 69.11万 - 项目类别:
Computer Cluster for Computational and Structural Biology
用于计算和结构生物学的计算机集群
- 批准号:
7217100 - 财政年份:2007
- 资助金额:
$ 69.11万 - 项目类别:
CLINICAL TRIAL: KLH WITH GM-CSF, IN PATIENTS WITH FOLLICULAR NON-HODGKIN'S LYMPH
临床试验:KLH 联合 GM-CSF,用于滤泡性非霍奇金淋巴瘤患者
- 批准号:
7717852 - 财政年份:2007
- 资助金额:
$ 69.11万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 69.11万 - 项目类别:
Functional Ocular Chemoproteomics for Retinal Biology Insight and in vivo Enzyme Activity
用于视网膜生物学洞察和体内酶活性的功能性眼部化学蛋白质组学
- 批准号:
10667228 - 财政年份:2023
- 资助金额:
$ 69.11万 - 项目类别:
Structure of GDAP1 bound to a product of lipid peroxidation
与脂质过氧化产物结合的 GDAP1 的结构
- 批准号:
10645396 - 财政年份:2023
- 资助金额:
$ 69.11万 - 项目类别:
ImmunoPET Probes for the Imaging of Lyme Disease
用于莱姆病成像的免疫PET探针
- 批准号:
10802275 - 财政年份:2023
- 资助金额:
$ 69.11万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 69.11万 - 项目类别: