Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
基本信息
- 批准号:10659941
- 负责人:
- 金额:$ 47.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffinityAmino Acid MotifsAntibioticsArchitectureArrhythmiaBacteriaBindingBinding SitesBiophysicsCardiacChemicalsCollectionComplexCouplingDataData AnalysesDiseaseDrug TargetingElectrophysiology (science)EventExhibitsFrequenciesFunctional disorderFundingGrantHealthHeartHomologous GeneHumanHydration statusIon ChannelIonsKineticsLaboratoriesLeadLengthLifeLigand BindingLigandsLocationLong QT SyndromeMeasurementMeasuresMedicalMembraneMembrane PotentialsMethodsModelingMolecularMolecular ConformationMolecular ProbesMutationNMR SpectroscopyNervous SystemNeuronsPathway interactionsPharmaceutical PreparationsPhysiologic pulsePotassium ChannelProcessPropertyProtein RegionProtonsRegulationRegulatory ElementRelaxationReportingResearchRoleSequence AnalysisSignal TransductionSourceStructureTestingThermodynamicsTimebasecarbonyl groupexperimental studyextracellularinsightinterestmethicillin resistant Staphylococcus aureusmillisecondmolecular dynamicsmutantpathogenpathogenic bacteriaproteoliposomesresponsesensorsmall moleculesolid state nuclear magnetic resonancevoltage gated channel
项目摘要
Potassium channels control membrane potential and signaling processes for humans and pathogens. Essentially all
characterized K+ channels inactivate after opening due to a transmembrane allosteric process that appears to be a
slow result of activation and involves residues near the selectivity filter in the pore domain (c-type inactivation). Since
the activated state is the only conductive species, and is metastable, inactivation controls mean open time and
thereby modulates function
for many important channels and drug targets. For example, neurons use K+ channel
inactivation kinetics to modulate their firing frequency, and inactivation kinetics in the channels of the human heart
have strong effects on heart timing. Our research provided evidence in the K+ channel KcsA that the molecular basis of
c-type inactivation is transmembrane allosteric coupling between the activation gate (H+ binding to the intracellular pH
sensor) and the inactivation gate (K+ release from the extracellular selectivity filter). In recent efforts, we have delineated
the mechanism for transmembrane allosteric control of channel activity by identifying residues that serve important roles
in the allosteric response using NMR chemical shifts and mutation. We showed that activation and opening directly lead to
K+ loss in the selectivity filter for wild type, but not for inactivation-reduced mutants, for which thermodynamic coupling
between opening and K+ affinity is reduced. Our studies use solid state NMR measurements on full-length wild-type
channels in hydrated proteoliposomes and offer atomistic access to structure, as well as the dynamics and
thermodynamics of ligand binding. Thus, studies in the last period offer support for the hypothesis that allosteric coupling
between activation and inactivation is the basis for inactivation and channel timing. The studies also give support for the
specific identities of the “hotspots”. (Aim 1) In the upcoming period, a definitive test will be based on mutants that are
accelerated in inactivation, in the sense that these mutants increase the “timing” function rather than abolish it. Many of
these faster-inactivating mutants are also of interest because of similarities or analogies to eukaryotic channels that are
fast-inactivating. (Aim 2) We plan to probe the conformational dynamics of the activated open state of the channel with
recently developed NMR methods, to identify spontaneous conversion to early intermediates of inactivation. Specific
methods developed in the last period allow us to carry out studies of the dynamics of key carbonyl and aromatic groups.
Recent breakthroughs in the sensitivity of solid state NMR methods will be harnessed so that controls can be performed
to test hypothesized relationships between dynamics and function, for example from molecular dynamics simulations.
(Aim 3) Finally, in Ktr, a related channel that has been identified as a drug target for many pathogenic bacteria, we plan to
clarify ligand-channel interactions determining the binding location of promising lead compounds. We will also
characterize the inactivation mechanism and determine the consequence to allostery, inactivation and function when
ligands bind. A clearer understanding of the thermodynamics and dynamics in these exemplars of transmembrane
allostery is likely to lead to clarification of broad biophysical principles, as well as specific insights into small molecule
modulators of disease-related channel function.
钾通道基本上控制着人类和病原体的膜电位和信号传导过程。
由于跨膜变构过程,K+通道在打开后失活,这似乎是
激活速度缓慢,并且涉及孔域中选择性过滤器附近的残基(c 型失活)。
激活状态是唯一的导电物质,并且是亚稳态的,失活控制意味着开放时间和
从而调节功能
对于许多重要的通道和药物靶标,例如神经元使用 K+ 通道。
调节其发射频率的失活动力学,以及人类心脏通道中的失活动力学
我们的研究提供了 K+ 通道 KcsA 的分子基础证据。
c型失活是激活门(H+与细胞内pH值结合)之间的跨膜变构耦合
在最近的努力中,我们已经描述了失活门(K+从细胞外选择性过滤器释放)。
通过识别发挥重要作用的残基来跨膜变构控制通道活性的机制
在使用核磁共振化学位移和突变的变构反应中,我们表明激活和开放直接导致。
对于野生型,选择性过滤器中 K+ 损失,但对于失活减少的突变体则不然,因为热力学耦合
我们的研究使用固态 NMR 测量全长野生型。
水合蛋白脂质体中的通道并提供原子进入结构以及动力学和
因此,上一时期的研究为变构偶联的假设提供了支持。
激活和失活之间的关系是失活和通道计时的基础,这些研究也为这一点提供了支持。
“热点”的具体身份(目标 1) 在接下来的一段时间内,最终的测试将基于突变体。
加速失活,从某种意义上说,这些突变体增强了“计时”功能,而不是废除了它。
这些失活更快的突变体也引起人们的兴趣,因为它们与真核通道有相似之处或相似之处
(目标 2)我们计划探索通道激活开放状态的构象动力学。
最近开发了核磁共振方法,以识别自发转化为早期特定失活中间体。
上一时期开发的方法使我们能够对关键羰基和芳香基团的动力学进行研究。
将利用固态核磁共振方法灵敏度方面的最新突破来进行控制
测试动力学和功能之间已建立的关系,例如通过分子动力学模拟。
(目标3)最后,在Ktr这个已被确定为许多病原菌药物靶点的相关通道中,我们计划
我们还将阐明配体通道相互作用,确定有前途的先导化合物的结合位置。
表征失活机制并确定变构、失活和功能的后果
更清楚地了解这些跨膜示例中的热力学和动力学。
变构可能会澄清广泛的生物物理原理,以及对小分子的具体见解
疾病相关通道功能的调节剂。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NMR studies of lipid regulation of the K+ channel KcsA.
K 通道 KcsA 脂质调节的 NMR 研究。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang, Dongyu;Howarth, Gary S;Parkin, Lia A;McDermott, Ann E
- 通讯作者:McDermott, Ann E
Protein linewidth and solvent dynamics in frozen solution NMR.
冷冻溶液 NMR 中的蛋白质线宽和溶剂动力学。
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Siemer, Ansgar B;Huang, Kuo;McDermott, Ann E
- 通讯作者:McDermott, Ann E
Homonuclear mixing sequences for perdeuterated proteins.
全氘化蛋白质的同核混合序列。
- DOI:
- 发表时间:2011-01
- 期刊:
- 影响因子:0
- 作者:Huang, Kuo;Siemer, Ansgar B;McDermott, Ann E
- 通讯作者:McDermott, Ann E
Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
低温下蛋白质构象异质性对 NMR 线形的贡献。
- DOI:
- 发表时间:2024-02-20
- 期刊:
- 影响因子:11.1
- 作者:Yi, Xu;Fritzsching, Keith J;Rogawski, Rivkah;Xu, Yunyao;McDermott, Ann E
- 通讯作者:McDermott, Ann E
Investigation of slow molecular dynamics using R-CODEX.
使用 R-CODEX 研究慢分子动力学。
- DOI:10.1016/j.jmr.2012.05.019
- 发表时间:2012-09
- 期刊:
- 影响因子:2.2
- 作者:Li, Wenbo;McDermott, Ann
- 通讯作者:McDermott, Ann
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANN E MCDERMOTT其他文献
ANN E MCDERMOTT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANN E MCDERMOTT', 18)}}的其他基金
HIGH FIELD/HIGH FREQUENCY ESR FOR STUDYING DNP IN BIOMEMBRANES
用于研究生物膜中 DNP 的高场/高频 ESR
- 批准号:
8364114 - 财政年份:2011
- 资助金额:
$ 47.18万 - 项目类别:
DYNAMIC NUCLEAR POLARIZATION SOLID STATE NMR SPECTROMETER FOR BIOMOLECULAR STUDIE
用于生物分子研究的动态核偏振固态核磁共振波谱仪
- 批准号:
7839443 - 财政年份:2010
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
9117619 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
10224775 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
8760232 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
10460945 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Channels and Pumps by Solid State NMR
通过固态核磁共振研究通道和泵的结构和功能
- 批准号:
8325732 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Channels and Pumps by Solid State NMR
通过固态核磁共振研究通道和泵的结构和功能
- 批准号:
8142738 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
10021668 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
Structural and Functional Studies of Channels and Pumps by Solid State NMR
通过固态核磁共振研究通道和泵的结构和功能
- 批准号:
7941916 - 财政年份:2009
- 资助金额:
$ 47.18万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Comprehensive identification of E3 ubiquitin ligases that degrade heart, lung, and blood-relevant transcription factors
全面鉴定可降解心脏、肺和血液相关转录因子的 E3 泛素连接酶
- 批准号:
10677457 - 财政年份:2023
- 资助金额:
$ 47.18万 - 项目类别:
Comprehensive identification of E3 ubiquitin ligases that degrade heart, lung, and blood-relevant transcription factors
全面鉴定可降解心脏、肺和血液相关转录因子的 E3 泛素连接酶
- 批准号:
10677457 - 财政年份:2023
- 资助金额:
$ 47.18万 - 项目类别:
The Antigen Repertoire of CD4 T cells from Pancreatic Islets
胰岛 CD4 T 细胞的抗原库
- 批准号:
10503562 - 财政年份:2022
- 资助金额:
$ 47.18万 - 项目类别:
The Antigen Repertoire of CD4 T cells from Pancreatic Islets
胰岛 CD4 T 细胞的抗原库
- 批准号:
10700133 - 财政年份:2022
- 资助金额:
$ 47.18万 - 项目类别:
Structure and Functionof a Parasitic TGF-beta Mimic, TGM
寄生 TGF-β 模拟物 (TGM) 的结构和功能
- 批准号:
10531540 - 财政年份:2021
- 资助金额:
$ 47.18万 - 项目类别: