Microstructured Intestinal Retentive Devices for Sustained Oral Delivery
用于持续口服给药的微结构肠保留装置
基本信息
- 批准号:10021658
- 负责人:
- 金额:$ 17.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAdhesionsAdhesivesAdoptedBenignBiologicalBiological AvailabilityCessation of lifeCharacteristicsClinicalComplexContrast MediaCustomDataDevicesDiagnostic radiologic examinationDiseaseDisease ManagementDoseDrug Delivery SystemsElastomersFamily suidaeFilmFrequenciesFrictionGastrointestinal TransitGastrointestinal tract structureGeometryGlycerolHealthcare IndustryHealthcare SystemsHigh Pressure Liquid ChromatographyIn VitroInflammatory Bowel DiseasesIntestinesKineticsKnowledgeLiquid substanceMeasurementMeasuresMechanicsMemoryMetabolic DiseasesMiniature SwineModelingModulusMoldsMolecularMolecular WeightMucinsMucous MembraneNon-Insulin-Dependent Diabetes MellitusObesityOralOral AdministrationOutcomePatientsPeptidesPerformancePeristalsisPharmaceutical PreparationsPhysical FunctionPigmentsPolymersPropertyPylorusRadialRegimenRoentgen RaysRouteShapesSmall IntestinesStomachStructureSystemTechnologyTestingTextureTherapeuticThinnessTimeTimeLineTissuesUV Radiation ExposureVancomycinVillusWorkbasecompliance behaviorcontrolled releasecostcost effectivecrosslinkdesignelastomericgastrointestinalimprovedin vivoinnovationinstrumentmicrodevicemonomernovelparticleprematurepressureresidenceresponsesmall moleculesuccesstranslational impact
项目摘要
PROJECT SUMMARY / ABSTRACT
Compliance with oral medications is often poor, which costs the US healthcare industry billions of dollars and
contributes to ~100,000 premature deaths each year. The likelihood for compliance is greatly increased for
medications that are administered as once-weekly medications compared to once-daily regimens. This
transformation can be accomplished by increasing the residence time of drug delivery devices within the GI
tract. Previous strategies aimed at increasing the residence time of devices (e.g. buoyant gastric devices,
expandable gastroretention devices, and mucoadhesive materials) have achieved only partial success, to date.
This project will leverage in-house expertise in biodegradable elastomers, polymer processing, and pigment-
based underwater adhesives to produce a device-based oral delivery system that can increase the residence
time within the small intestine of the GI tract by 10X from 20 h to > 200h. The key innovation in this approach is
the use of textured device-based mucoadhesives. Specifically, a conformal expandable device will
mechanically interlock with the villi of the small intestine. Mechanical interlocking increases mucoadhesion at
the tissue-device interface, which will resist peristalsis and therefore increase the characteristic residence time
for devices transiting the GI track. Devices will be composed of dual-crosslinked biodegradable elastomeric
networks that are packaged into a temporary form factor for facile transit through the stomach using a pH-
sensitive polymer encapsulant. Upon reaching the small intestine, the pH-sensitive polymer will dissolve and
the drug-loaded device will expand to anchor the device within the lumen. This project will quantify in vitro
device performance by measuring figures of merit such as friction forces and the work of adhesion as a
function of physical parameters and device geometry. The timeline for gastric transit will be quantified using X-
ray imaging to measure the in vivo gastric transit of devices loaded with X-ray contrast agent in minipigs. The
oral bioavailability of a model peptide will also be measured. This project has the potential to advance a
transformative device-based mucoadhesive that can increase patient compliance for orally administered
medications. Furthermore, a controlled release device that stably resides in the GI tract could enable the
delivery of bioactive therapeutics with poor bioavailability or extremely short half-lives such as low molecular
weight peptides. Taken together, this technology could improve the administration of many orally administered
therapeutics to manage disease states such as inflammatory bowel disease, obesity, or Type 2 diabetes.
项目概要/摘要
口服药物的依从性往往很差,这给美国医疗保健行业造成了数十亿美元的损失
每年导致约 100,000 人过早死亡。合规的可能性大大增加
与每日一次的治疗方案相比,每周一次的药物治疗。这
可以通过增加药物输送装置在胃肠道内的停留时间来完成转化
道。以前的策略旨在增加装置的停留时间(例如浮胃装置、
迄今为止,可扩张的胃滞留装置和粘膜粘附材料仅取得了部分成功。
该项目将利用可生物降解弹性体、聚合物加工和颜料方面的内部专业知识
基于水下粘合剂来生产基于设备的口腔输送系统,可以增加停留时间
胃肠道小肠内的时间从 20 小时延长至 > 200 小时 10 倍。该方法的关键创新在于
使用基于纹理装置的粘膜粘合剂。具体来说,保形可扩张装置将
与小肠绒毛机械连锁。机械互锁增加了粘膜粘附
组织-装置界面,它将抵抗蠕动,从而增加特征停留时间
适用于通过 GI 轨道的设备。装置将由双交联的可生物降解弹性体组成
网络被包装成临时形状因子,以便使用 pH 值轻松通过胃
敏感聚合物封装剂。到达小肠后,pH 敏感聚合物会溶解并
载药装置将膨胀以将装置锚定在管腔内。该项目将在体外量化
通过测量摩擦力和粘附功等品质因数来衡量设备性能
物理参数和设备几何形状的函数。胃转运的时间线将使用 X- 进行量化
射线成像测量小型猪体内装载 X 射线造影剂的装置的体内胃传输。这
还将测量模型肽的口服生物利用度。该项目有潜力推动
基于变革性装置的粘膜粘附剂,可以提高患者口服给药的依从性
药物。此外,稳定地驻留在胃肠道中的控释装置可以使
提供生物利用度差或半衰期极短的生物活性治疗药物,例如低分子药物
重量肽。总而言之,这项技术可以改善许多口服药物的管理
控制炎症性肠病、肥胖或 2 型糖尿病等疾病状态的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher John Bettinger其他文献
Biologically-derived soft conducting hydrogels using heparin-doped polymer networks
使用肝素掺杂聚合物网络的生物衍生软导电水凝胶
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:17.1
- 作者:
Hongkun He;Huai Yang;Krzysztof Matyjaszewski;Christopher John Bettinger - 通讯作者:
Christopher John Bettinger
Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates
通过分子模板的拓扑控制形成弹性体导电聚苯胺
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:17.1
- 作者:
Zhou Yang;Huai Yang;Krzysztof Matyjaszewski;Christopher John Bettinger - 通讯作者:
Christopher John Bettinger
Christopher John Bettinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher John Bettinger', 18)}}的其他基金
Microstructured Intestinal Retentive Devices for Sustained Oral Delivery
用于持续口服给药的微结构肠保留装置
- 批准号:
9808615 - 财政年份:2019
- 资助金额:
$ 17.43万 - 项目类别:
Drug Eluting Embolization Coils for Improved Treatment of Intracranial Aneurysms
用于改善颅内动脉瘤治疗的药物洗脱栓塞弹簧圈
- 批准号:
10020203 - 财政年份:2019
- 资助金额:
$ 17.43万 - 项目类别:
Biodegradable Field-Effect Transitors for Electronically Active Scaffolds
用于电子活性支架的可生物降解场效应晶体管
- 批准号:
7611447 - 财政年份:2009
- 资助金额:
$ 17.43万 - 项目类别:
Biodegradable Field-Effect Transitors for Electronically Active Scaffolds
用于电子活性支架的可生物降解场效应晶体管
- 批准号:
7800978 - 财政年份:2009
- 资助金额:
$ 17.43万 - 项目类别:
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
2023 Microbial Adhesion and Signal Transduction Gordon Research Conferences and Seminar
2023年微生物粘附和信号转导戈登研究会议和研讨会
- 批准号:
10666171 - 财政年份:2023
- 资助金额:
$ 17.43万 - 项目类别:
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10442908 - 财政年份:2022
- 资助金额:
$ 17.43万 - 项目类别:
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 17.43万 - 项目类别:
MOLECULAR BASIS OF PILUS-MEDIATED GONOCOCCAL ADHESION
菌毛介导的淋球菌粘附的分子基础
- 批准号:
10363679 - 财政年份:2021
- 资助金额:
$ 17.43万 - 项目类别: