Chemigenetic voltage indicators for far-red and two-photon imaging in vivo
用于体内远红和双光子成像的化学遗传学电压指示器
基本信息
- 批准号:10731843
- 负责人:
- 金额:$ 216.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAmino AcidsAnimal ModelAnimalsBehaviorBiological AvailabilityBrainCellsColorCouplesDependenceDevelopmentDiseaseDyesElectron TransportElectronicsElectronsElectrophysiology (science)EventFamilyFluorescenceFluorescence Resonance Energy TransferFluorescent DyesGeneticGenetic EngineeringHealthImageIndividualInvestigationLanguageLightMapsMeasurementMembraneMembrane PotentialsMolecularMolecular ConformationMotionMusNervous SystemNeuronsNeurosciencesOpticsPenetrationPhotonsPhototoxicityProcessPropertyProtein EngineeringProteinsReporterReportingResearchResolutionSensorySignal TransductionSliceSpecificitySpeedStructureSystemTechniquesTertiary Protein StructureTestingTimeTryptophanValidationVariantWorkcell typedesignexperimental studyfluorophorehybrid proteinimprovedin vivoin vivo evaluationin vivo fluorescence imagingin vivo two-photon imagingmillisecondmodel organismneural circuitnoveloptogeneticspatch clamppostsynapticpreventprototyperesponsescaffoldsensorsmall moleculespatiotemporaltooltransmission processtwo-photonvoltage
项目摘要
PROJECT SUMMARY
DESCRIPTION (provided by applicant): Changes in membrane potential are the fundamental language of the nervous system, but these voltage signals are not directly visible. Existing membrane voltage sensors impose severe constraints on the depth, duration, and field of view of in vivo voltage imaging. The development of brighter, redder, and two-photon (2P) compatible voltage indicators would dramatically increase the number of brain structures accessible to voltage imaging and would also enable qualitatively new types of measurements which could be transformative for neuroscience. This proposal will develop a family of hybrid protein-small molecule (chemogenetic) voltage sensors based on a new sensing mechanism, photoinduced electron transfer (PET). Genetically encoded PET voltage sensors will accept diverse bioavailable HaloTag dyes to report membrane voltage via one-photon (1P) or 2P imaging. This approach combines the exquisite molecular specificity of genetically encoded proteins with the superior photophysical properties of synthetic fluorophores. Proof-of-principle experiments demonstrated chemogenetic voltage sensor proteins (termed HaloVSDs) loaded with a far-red bioavailable dye. These HaloVSDs reported subthreshold voltages and spikes in cultured neurons with excellent sensitivity and speed. In Aim 1, the team will evolve this scaffold to create improved far-red PET-based chemogenetic voltage sensors. The sensors will undergo detailed photophysical characterization and will be validated in mice in vivo. In Aim 2, the team will generate a palette of 2P-compatible voltage sensors (HaloVSD-2P) for accessible 2P imaging using 1000–1300 nm excitation wavelengths. HaloVSD-2P will be a modular platform that can be used with multiple bright, photostable, and bioavailable dyes. In Aim 3, the team will combine the HaloVSDs with channelrhodopsins for a bidirectional optical neuro-electronic interface, i.e., all-optical electrophysiology. These tools will be used to construct functional connectivity maps in vivo. Due to their high brightness, HaloVSDs require ~100-fold less excitation light compared to existing far-red Achaerhodopsin- derived voltage sensors. This will minimize fluorescence background, phototoxicity, and bleaching, and will prevent spurious red-light activation of channelrhodopsins. These tools will enable robust crosstalk-free all- optical electrophysiology experiments in live animals. HaloVSDs will provide neuroscientists with unprecedented means of investigating animal models with all-optical interrogation of circuit dynamics. Because they are genetically encoded, these sensors can be easily introduced to various model organisms and will be of broad use in studies of brain circuit function in health and disease.
项目概要
描述(由申请人提供):膜电位的变化是神经系统的基本语言,但这些电压信号不是直接可见的,现有的膜电压传感器对体内电压的深度、持续时间和视野施加了严格的限制。更亮、更红和双光子 (2P) 兼容的电压指示器的开发将极大地增加可进行电压成像的大脑结构的数量,并且还将实现新的定性测量类型,这可能会给神经科学带来变革。开发一个基于新传感机制的混合蛋白质-小分子(化学遗传学)电压传感器家族,基因编码的 PET 电压传感器将接受多种生物可利用的 HaloTag 染料,通过单光子 (1P) 或 2P 报告膜电压。这种方法结合了基因编码蛋白质的精致分子特异性和合成荧光团的卓越光物理特性化学遗传学电压传感器蛋白质的原理验证实验。 (称为 HaloVSD)装载有远红生物可利用染料。这些 HaloVSD 报告了培养神经元中的亚阈值电压和峰值,具有出色的灵敏度和速度。在目标 1 中,该团队将改进该支架以创建改进的基于 PET 的化学遗传学电压。这些传感器将进行详细的光物理表征,并将在小鼠体内进行验证。在目标 2 中,该团队将生成一系列 2P 兼容的电压传感器。 (HaloVSD-2P) 使用 1000–1300 nm 激发波长进行 2P 成像,HaloVSD-2P 将是一个模块化平台,可与多种明亮、光稳定和生物可利用的染料结合使用。用于双向光学神经电子接口的视紫红质通道,即全光学电生理学,这些工具将用于构建。由于其高亮度,HaloVSD 所需的激发光比现有的远红乙酰视紫红质电压传感器少约 100 倍,这将最大限度地减少荧光背景、光毒性和漂白,并防止虚假红光。 HaloVSD 将为神经科学家提供前所未有的研究动物模型的方法。由于这些传感器是经过基因编码的,因此可以轻松引入各种模型生物体,并将广泛用于健康和疾病中的脑回路功能研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Abdelfattah其他文献
Ahmed Abdelfattah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Abdelfattah', 18)}}的其他基金
Lighting up the brain: Optogenetic tools to record, trace, and manipulate brain circuits at cellular resolution
点亮大脑:以细胞分辨率记录、追踪和操纵大脑回路的光遗传学工具
- 批准号:
10244755 - 财政年份:2021
- 资助金额:
$ 216.49万 - 项目类别:
相似国自然基金
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CBP/p300在氨基酸驱动肝糖异生中的作用研究
- 批准号:82300896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于乙酰化修饰探究支链氨基酸调控大口黑鲈肝脏脂代谢的分子机制
- 批准号:32303023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
- 批准号:82301621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Polyunsaturated fatty acids as anti-arrhythmic agents.
多不饱和脂肪酸作为抗心律失常剂。
- 批准号:
10874097 - 财政年份:2022
- 资助金额:
$ 216.49万 - 项目类别:
Polyunsaturated fatty acids as anti-arrhythmic agents.
多不饱和脂肪酸作为抗心律失常剂。
- 批准号:
10483411 - 财政年份:2022
- 资助金额:
$ 216.49万 - 项目类别:
Discovery and/or Validation of Pharmacodynamic Markers
药效标记物的发现和/或验证
- 批准号:
10398392 - 财政年份:2021
- 资助金额:
$ 216.49万 - 项目类别:
Development and Validation of Animal Models and/or Outcome Measures
动物模型和/或结果测量的开发和验证
- 批准号:
10398390 - 财政年份:2021
- 资助金额:
$ 216.49万 - 项目类别:
The SIRT1-Gpd1L-NAD+ interactome in regulation of the Neuronal Sodium Channel: Implications for Cognitive Impairment of Alzheimerâs Dementia
SIRT1-Gpd1L-NAD 相互作用组对神经元钠通道的调节:对阿尔茨海默氏痴呆认知障碍的影响
- 批准号:
10117944 - 财政年份:2019
- 资助金额:
$ 216.49万 - 项目类别: