Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
基本信息
- 批准号:9789130
- 负责人:
- 金额:$ 169.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAmyloid FibrilsAmyloid beta-ProteinAmyloidosisAstrocytesAutopsyBiological AssayBiologyBrainBrain DiseasesBrain regionCRISPR/Cas technologyCell Culture TechniquesCellsCharacteristicsClinicalClinical TrialsCoculture TechniquesCognitionComplexDataData SetDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDiseaseEpigenetic ProcessEtiologyFunctional Magnetic Resonance ImagingFunctional disorderGene ExpressionGenesGeneticGenetic DiseasesGenetic TranscriptionGenomicsHeterogeneityHumanIn VitroIndividualKnock-outKnowledgeLate Onset Alzheimer DiseaseLightMapsMeasuresModelingMolecularMolecular ProfilingMusNeuritesNeurobiologyNeurofibrillary TanglesNeurogliaNeuronsOrganoidsPathologyPathway AnalysisPatientsPenetrancePerformancePhenotypePopulationProteomicsProtocols documentationQuality ControlRecombinantsRoleSamplingSenile PlaquesSignal TransductionSpecificityStructureSystemTauopathiesTestingThickTransgenic MiceValidationWorkbrain cellcell typeclinical phenotypecohortcourse developmentdisorder subtypeexperimental studyextracellularhigh dimensionalityimprovedin vivoindexingindividualized medicineinduced pluripotent stem cellinsightknock-downmetabolomicsmolecular imagingmolecular scalemolecular subtypesmouse modelmultidimensional datanetwork modelsneuroimagingnoveloutcome forecastoverexpressionpatient subsetsprecision medicinerelating to nervous systemscreeningsingle cell analysissingle-cell RNA sequencingtau-1transcriptome sequencingtranscriptomics
项目摘要
Project Summary
Alzheimer's disease (AD) pathology is characterized by the presence of phosphorylated tau in
neurofibrillary tangles (NFTs), dystrophic neurites and abundant extracellular β-amyloid in senile
plaques. However, the etiology of AD remains elusive, partly due to the wide spectrum of clinical and
neurobiological/neuropathological features in AD patients. Thus, heterogeneity in AD has complicated
the task of discovering disease-modifying treatments and developing accurate in vivo indices for
diagnosis and clinical prognosis. Different approaches have been proposed for AD subtyping, but
they are generally neither suitable for high-dimensional data nor actionable due to the lack of
mechanistic insights. Increased knowledge and understanding of different AD subtypes would shed
light on recently failed clinical trials and provide for the potential to tailor treatments with specificity to
more homogeneous subgroups of patients. By integrating genetic, molecular and neuroimaging data
to more precisely define AD subtypes, we may be able to better discriminate between highly
overlapping clinical phenotypes. Furthermore, the identification of such subtypes may potentially
improve our understanding of its underlying pathomechanisms, prediction of its course, and the
development of novel disease-modifying treatments. In this application, we propose to systematically
identify and characterize molecular subtypes of AD by developing and employing cutting-edge
network biology approaches to multiple existing large-scale genetic, gene expression, proteomic and
functional MRI datasets. We will investigate the functional roles of key drivers underlying predicted
AD subtypes as well as three candidate key drivers from our current AMP-AD consortia work in
control and AD hiPSC-derived neural co-culture systems and then in complex organoids by screening
the predicted transcriptional impact of top key drivers in single cell and cell-population-wide analyses.
Functional assays in each cell type will be used to build evidence for relevance to AD-subtype
phenotypes. Single cell RNA sequencing data will be generated to identify perturbation signatures in
selected drivers that will then be mapped to subtype specific networks to build comprehensive
signaling maps for each driver. The top three most promising drivers of AD subtypes and the three
existing AMP-AD targets will be further validated using a) an independent postmortem cohort, and b)
recombinant mice, including amyloidosis, tauopathy and new “humanized” models.
项目概要
阿尔茨海默病 (AD) 病理学的特征是磷酸化 tau 蛋白的存在
老年神经原纤维缠结(NFT)、营养不良的神经突和丰富的细胞外 β-淀粉样蛋白
然而,AD 的病因仍然难以捉摸,部分原因是其临床和病理范围广泛。
AD 患者的神经生物学/神经病理学特征因此,AD 的异质性变得复杂。
发现疾病缓解疗法并开发准确的体内指数的任务
对于 AD 亚型的诊断和临床预后提出了不同的方法,但是
它们通常既不适合高维数据,也由于缺乏可操作性
增加对不同 AD 亚型的认识和理解。
回顾最近失败的临床试验,并提供针对特定情况定制治疗的可能性
通过整合遗传、分子和神经影像数据,形成更同质的患者亚组。
为了更精确地定义 AD 亚型,我们也许能够更好地区分高度不同的 AD 亚型。
此外,这些亚型的识别可能存在重叠。
提高我们对其潜在病理机制的理解、对其病程的预测以及
在此应用中,我们建议系统地开发新的疾病缓解疗法。
通过开发和采用尖端技术来识别和表征 AD 的分子亚型
网络生物学方法可用于多种现有的大规模遗传、基因表达、蛋白质组学和
我们将研究预测的关键驱动因素的功能作用。
AD 子类型以及我们当前 AMP-AD 联盟的三个候选关键驱动因素
控制和 AD hiPSC 衍生的神经共培养系统,然后通过筛选在复杂的类器官中
单细胞和细胞群分析中最关键驱动因素的预测转录影响。
每种细胞类型的功能测定将用于建立与 AD 亚型相关的证据
将生成单细胞 RNA 测序数据来识别扰动特征。
然后将选定的驱动程序映射到子类型特定网络以构建全面的
每个驱动程序的信号图。AD 亚型的前三个最有希望的驱动程序以及三个驱动程序。
现有的 AMP-AD 目标将使用 a) 独立的尸检队列进一步验证,以及 b)
重组小鼠,包括淀粉样变性、tau蛋白病和新的“人源化”模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHELLE E EHRLICH其他文献
MICHELLE E EHRLICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHELLE E EHRLICH', 18)}}的其他基金
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10404989 - 财政年份:2018
- 资助金额:
$ 169.13万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10172822 - 财政年份:2018
- 资助金额:
$ 169.13万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10214197 - 财政年份:2018
- 资助金额:
$ 169.13万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
9788267 - 财政年份:2018
- 资助金额:
$ 169.13万 - 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知弹性的综合网络建模
- 批准号:
10170187 - 财政年份:2017
- 资助金额:
$ 169.13万 - 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知复原力的综合网络建模
- 批准号:
9439453 - 财政年份:2017
- 资助金额:
$ 169.13万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
9922436 - 财政年份:2014
- 资助金额:
$ 169.13万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
10475089 - 财政年份:2014
- 资助金额:
$ 169.13万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
10005927 - 财政年份:2014
- 资助金额:
$ 169.13万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
10251248 - 财政年份:2014
- 资助金额:
$ 169.13万 - 项目类别:
相似国自然基金
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 169.13万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 169.13万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 169.13万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 169.13万 - 项目类别: