Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease

识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法

基本信息

项目摘要

Project Summary Alzheimer's disease (AD) pathology is characterized by the presence of phosphorylated tau in neurofibrillary tangles (NFTs), dystrophic neurites and abundant extracellular β-amyloid in senile plaques. However, the etiology of AD remains elusive, partly due to the wide spectrum of clinical and neurobiological/neuropathological features in AD patients. Thus, heterogeneity in AD has complicated the task of discovering disease-modifying treatments and developing accurate in vivo indices for diagnosis and clinical prognosis. Different approaches have been proposed for AD subtyping, but they are generally neither suitable for high-dimensional data nor actionable due to the lack of mechanistic insights. Increased knowledge and understanding of different AD subtypes would shed light on recently failed clinical trials and provide for the potential to tailor treatments with specificity to more homogeneous subgroups of patients. By integrating genetic, molecular and neuroimaging data to more precisely define AD subtypes, we may be able to better discriminate between highly overlapping clinical phenotypes. Furthermore, the identification of such subtypes may potentially improve our understanding of its underlying pathomechanisms, prediction of its course, and the development of novel disease-modifying treatments. In this application, we propose to systematically identify and characterize molecular subtypes of AD by developing and employing cutting-edge network biology approaches to multiple existing large-scale genetic, gene expression, proteomic and functional MRI datasets. We will investigate the functional roles of key drivers underlying predicted AD subtypes as well as three candidate key drivers from our current AMP-AD consortia work in control and AD hiPSC-derived neural co-culture systems and then in complex organoids by screening the predicted transcriptional impact of top key drivers in single cell and cell-population-wide analyses. Functional assays in each cell type will be used to build evidence for relevance to AD-subtype phenotypes. Single cell RNA sequencing data will be generated to identify perturbation signatures in selected drivers that will then be mapped to subtype specific networks to build comprehensive signaling maps for each driver. The top three most promising drivers of AD subtypes and the three existing AMP-AD targets will be further validated using a) an independent postmortem cohort, and b) recombinant mice, including amyloidosis, tauopathy and new “humanized” models.
项目概要 阿尔茨海默病 (AD) 病理学的特征是磷酸化 tau 蛋白的存在 老年神经原纤维缠结(NFT)、营养不良的神经突和丰富的细胞外 β-淀粉样蛋白 然而,AD 的病因仍然难以捉摸,部分原因是其临床和病理范围广泛。 AD 患者的神经生物学/神经病理学特征因此,AD 的异质性变得复杂。 发现疾病缓解疗法并开发准确的体内指数的任务 对于 AD 亚型的诊断和临床预后提出了不同的方法,但是 它们通常既不适合高维数据,也由于缺乏可操作性 增加对不同 AD 亚型的认识和理解。 回顾最近失败的临床试验,并提供针对特定情况定制治疗的可能性 通过整合遗传、分子和神经影像数据,形成更同质的患者亚组。 为了更精确地定义 AD 亚型,我们也许能够更好地区分高度不同的 AD 亚型。 此外,这些亚型的识别可能存在重叠。 提高我们对其潜在病理机制的理解、对其病程的预测以及 在此应用中,我们建议系统地开发新的疾病缓解疗法。 通过开发和采用尖端技术来识别和表征 AD 的分子亚型 网络生物学方法可用于多种现有的大规模遗传、基因表达、蛋白质组学和 我们将研究预测的关键驱动因素的功能作用。 AD 子类型以及我们当前 AMP-AD 联盟的三个候选关键驱动因素 控制和 AD hiPSC 衍生的神经共培养系统,然后通过筛选在复杂的类器官中 单细胞和细胞群分析中最关键驱动因素的预测转录影响。 每种细胞类型的功能测定将用于建立与 AD 亚型相关的证据 将生成单细胞 RNA 测序数据来识别扰动特征。 然后将选定的驱动程序映射到子类型特定网络以构建全面的 每个驱动程序的信号图。AD 亚型的前三个最有希望的驱动程序以及三个驱动程序。 现有的 AMP-AD 目标将使用 a) 独立的尸检队列进一步验证,以及 b) 重组小鼠,包括淀粉样变性、tau蛋白病和新的“人源化”模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHELLE E EHRLICH其他文献

MICHELLE E EHRLICH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHELLE E EHRLICH', 18)}}的其他基金

Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
  • 批准号:
    10404989
  • 财政年份:
    2018
  • 资助金额:
    $ 311.56万
  • 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
  • 批准号:
    10172822
  • 财政年份:
    2018
  • 资助金额:
    $ 311.56万
  • 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
  • 批准号:
    10214197
  • 财政年份:
    2018
  • 资助金额:
    $ 311.56万
  • 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
  • 批准号:
    9788267
  • 财政年份:
    2018
  • 资助金额:
    $ 311.56万
  • 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知弹性的综合网络建模
  • 批准号:
    10170187
  • 财政年份:
    2017
  • 资助金额:
    $ 311.56万
  • 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知复原力的综合网络建模
  • 批准号:
    9439453
  • 财政年份:
    2017
  • 资助金额:
    $ 311.56万
  • 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
  • 批准号:
    9789130
  • 财政年份:
    2014
  • 资助金额:
    $ 311.56万
  • 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
  • 批准号:
    9922436
  • 财政年份:
    2014
  • 资助金额:
    $ 311.56万
  • 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
  • 批准号:
    10475089
  • 财政年份:
    2014
  • 资助金额:
    $ 311.56万
  • 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
  • 批准号:
    10251248
  • 财政年份:
    2014
  • 资助金额:
    $ 311.56万
  • 项目类别:

相似国自然基金

琐琐葡萄黄酮对APP/PS-1双转基因AD小鼠细胞自噬及PI3K/AKT/mTOR信号通路的作用研究
  • 批准号:
    81960764
  • 批准年份:
    2019
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
LINGO-1对早期AD海马少突胶质细胞和髓鞘损伤的影响和机制
  • 批准号:
    81801269
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
ApoE4介导转基因小鼠炎症反应的AD发病机制研究
  • 批准号:
    31872311
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
水通道蛋白4在胶质淋巴系统清除功能和3xTg-AD小鼠病理进程中的作用
  • 批准号:
    81671070
  • 批准年份:
    2016
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
氟西汀通过5-HT系统多靶点对抗AD病理过程的作用和机制
  • 批准号:
    81671259
  • 批准年份:
    2016
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
  • 批准号:
    10761587
  • 财政年份:
    2023
  • 资助金额:
    $ 311.56万
  • 项目类别:
Machine Learning Approaches for Behavioral Phenotyping of Humanized Knock-in Models of Alzheimer's Disease
用于阿尔茨海默病人源化敲入模型行为表型的机器学习方法
  • 批准号:
    10741685
  • 财政年份:
    2023
  • 资助金额:
    $ 311.56万
  • 项目类别:
Exploring irisin as a novel target for Alzheimers Disease
探索鸢尾素作为阿尔茨海默病的新靶点
  • 批准号:
    10670486
  • 财政年份:
    2022
  • 资助金额:
    $ 311.56万
  • 项目类别:
Elucidating the protective effects of the KL-VS variant using isogenic hiPSCs
使用同基因 hiPSC 阐明 KL-VS 变体的保护作用
  • 批准号:
    10354135
  • 财政年份:
    2022
  • 资助金额:
    $ 311.56万
  • 项目类别:
Cellular senescence and cell fate/interactions as drivers of Alzheimer's and age-related dementias
细胞衰老和细胞命运/相互作用是阿尔茨海默氏症和年龄相关性痴呆的驱动因素
  • 批准号:
    10491081
  • 财政年份:
    2021
  • 资助金额:
    $ 311.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了