Computer-assisted Grading and Risk Stratification of Follicular Lymphoma

滤泡性淋巴瘤的计算机辅助分级和风险分层

基本信息

  • 批准号:
    7812178
  • 负责人:
  • 金额:
    $ 31.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-01 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Follicular lymphoma (FL) is the second most common non-Hodgkin's lymphoma. Several treatment options exist today, but these are costly and include significant toxicities. No biological or genetic markers are available in clinical practice for reliable risk stratification of follicular lymphomas and the choice of appropriate treatment depends heavily on morphology-based histological grading. In a system adopted by the World Health Organization (WHO), follicular lymphomas are stratified into three grades depending on the average count of centroblasts in ten randomly selected, standard high-power fields (HPFs). Follicular lymphomas with low histological grades show an indolent clinical course with long average survival, but are considered incurable with currently available therapies. In contrast, high-grade follicular lymphomas have an aggressive clinical course and are rapidly fatal if not treated with aggressive chemotherapy. However, in contrast to low-grade follicular lymphoma, high-grade FL may be cured with aggressive chemotherapy. Currently, the inter-reader agreement between pathologists in grading FL is extremely low. In a multi-site study, the agreement among experts for the various grades of follicular lymphoma varied between 61% and 73%. Since only ten HPFs are used by the pathologist for practical reasons, this system may be prone to selection bias in cases that show significant differences in various areas of a section. The primary goal of this project is to develop an effective computer-aided system to assist pathologists in making diagnostic decisions about histological grading of follicular lymphoma. It is important to note that this project aims to provide supplementary information to the pathologist as he or she carries out the classification process; this is not an attempt to automate the classification process. To achieve this objective, ten board-certified hematopathologists (with experience in grading follicular lymphoma) from The Ohio State University, Cleveland Clinic, Vanderbilt University, and private practice will participate in the creation of the database that will contain digitized follicular lymphoma slide images, as well as the associated truth for the development and evaluation of the computer-aided follicular lymphoma grading system. After extensive evaluation of the system with the collected datasets and outcome data, as well as datasets from the Cancer and Leukemia Group B (CALGB) trials, the developed system will be installed at participating pathologists' institutions, and the developed software will be made available to the research community as a shareable resource. PUBLIC HEALTH RELEVANCE: Follicular lymphoma (FL) is the second most common non-Hodgkin's lymphoma. This project aims to provide supplementary information to the pathologist for the grading of the tumor using computerized image analysis techniques. The supplementary information will be useful for better diagnosis, prognosis and treatment of this disease.
描述(由申请人提供):滤泡性淋巴瘤(FL)是第二常见的非霍奇金淋巴瘤。目前存在多种治疗方案,但这些方案成本高昂且具有显着的毒性。临床实践中没有可用的生物或遗传标记来对滤泡性淋巴瘤进行可靠的风险分层,并且适当治疗的选择在很大程度上取决于基于形态的组织学分级。在世界卫生组织 (WHO) 采用的系统中,滤泡性淋巴瘤根据十个随机选择的标准高倍视野 (HPF) 中中心母细胞的平均计数分为三个等级。组织学分级低的滤泡性淋巴瘤表现出惰性的临床病程,平均生存期长,但被认为用目前可用的疗法无法治愈。相比之下,高级别滤泡性淋巴瘤具有侵袭性临床病程,如果不采用侵袭性化疗治疗,会迅速致命。然而,与低度滤泡性淋巴瘤不同的是,高度滤泡性淋巴瘤可以通过积极的化疗治愈。目前,病理学家之间在 FL 分级方面的读者间一致性极低。在一项多中心研究中,专家对不同级别的滤泡性淋巴瘤的一致性在 61% 到 73% 之间。由于出于实际原因,病理学家仅使用 10 个 HPF,因此在切片的各个区域显示出显着差异的情况下,该系统可能容易出现选择偏差。该项目的主要目标是开发一种有效的计算机辅助系统,以协助病理学家做出有关滤泡性淋巴瘤组织学分级的诊断决策。值得注意的是,该项目旨在为病理学家进行分类过程提供补充信息;这并不是试图使分类过程自动化。为了实现这一目标,来自俄亥俄州立大学、克利夫兰诊所、范德比尔特大学和私人诊所的十名委员会认证的血液病理学家(具有滤泡性淋巴瘤分级经验)将参与创建包含数字化滤泡性淋巴瘤幻灯片图像的数据库,以及计算机辅助滤泡性淋巴瘤分级系统的开发和评估的相关事实。在使用收集的数据集和结果数据以及癌症和白血病 B 组 (CALGB) 试验的数据集对系统进行广泛评估后,开发的系统将安装在参与的病理学家机构,并且开发的软件将可供使用作为可共享资源向研究界提供。公共卫生相关性:滤泡性淋巴瘤 (FL) 是第二常见的非霍奇金淋巴瘤。该项目旨在为病理学家使用计算机图像分析技术对肿瘤进行分级提供补充信息。补充信息将有助于更好地诊断、预后和治疗该疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Metin Nafi Gurcan其他文献

Analysis of gene expression dynamics and differential expression in viral infections using generalized linear models and quasi-likelihood methods
使用广义线性模型和拟似然方法分析病毒感染中的基因表达动态和差异表达
  • DOI:
    10.3389/fmicb.2024.1342328
  • 发表时间:
    2024-04-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Mostafa Rezapour;Stephen J. Walker;David A. Ornelles;P. M. McNutt;Anthony Atala;Metin Nafi Gurcan
  • 通讯作者:
    Metin Nafi Gurcan
Employing machine learning to enhance fracture recovery insights through gait analysis.
利用机器学习通过步态分析增强骨折恢复洞察力。
  • DOI:
    10.1002/jor.25837
  • 发表时间:
    2024-04-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mostafa Rezapour;Rachel B. Seymour;Stephen H. Sims;M. Karunakar;Nahir A. Habet;Metin Nafi Gurcan
  • 通讯作者:
    Metin Nafi Gurcan
A comparative analysis of RNA-Seq and NanoString technologies in deciphering viral infection response in upper airway lung organoids
RNA-Seq 和 NanoString 技术在破译上呼吸道肺类器官病毒感染反应方面的比较分析
  • DOI:
    10.3389/fgene.2024.1327984
  • 发表时间:
    2024-06-18
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Mostafa Rezapour;Stephen J. Walker;David A. Ornelles;Muhammad Khalid Khan Niazi;Patrick M. McNutt;Anthony Atala;Metin Nafi Gurcan
  • 通讯作者:
    Metin Nafi Gurcan
Gene PointNet for Tumor Classification
用于肿瘤分类的 Gene PointNet
  • DOI:
    10.1101/2024.06.02.597020
  • 发表时间:
    2024-06-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Lu;Mostafa Rezapour;Haseebullah Baha;M. K. K. Niazi;Aarthi Narayanan;Metin Nafi Gurcan
  • 通讯作者:
    Metin Nafi Gurcan

Metin Nafi Gurcan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Metin Nafi Gurcan', 18)}}的其他基金

Efficient and cost-effective breast cancer risk stratification using whole slide histopathology images
使用全玻片组织病理学图像进行高效且经济的乳腺癌风险分层
  • 批准号:
    10649978
  • 财政年份:
    2023
  • 资助金额:
    $ 31.59万
  • 项目类别:
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
  • 批准号:
    10564534
  • 财政年份:
    2023
  • 资助金额:
    $ 31.59万
  • 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
  • 批准号:
    10631379
  • 财政年份:
    2022
  • 资助金额:
    $ 31.59万
  • 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
  • 批准号:
    10701848
  • 财政年份:
    2022
  • 资助金额:
    $ 31.59万
  • 项目类别:
Analytics & Machine-learning for Maternal-health Interventions (AMMI): A Cross-CTSA Collaboration
分析
  • 批准号:
    10670448
  • 财政年份:
    2022
  • 资助金额:
    $ 31.59万
  • 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
  • 批准号:
    10631379
  • 财政年份:
    2022
  • 资助金额:
    $ 31.59万
  • 项目类别:
Auto-Scope Software-Automated Otoscopy to Diagnose Ear Pathology
Auto-Scope 软件 - 用于诊断耳部病理的自动耳镜检查
  • 批准号:
    9790958
  • 财政年份:
    2018
  • 资助金额:
    $ 31.59万
  • 项目类别:
Pathology Image Informatics Platform for visualization, analysis and management
用于可视化、分析和管理的病理图像信息学平台
  • 批准号:
    9341177
  • 财政年份:
    2015
  • 资助金额:
    $ 31.59万
  • 项目类别:
Computer-based assessment of tumor microenvironment (TME) in Follicular Lymphoma
基于计算机的滤泡性淋巴瘤肿瘤微环境 (TME) 评估
  • 批准号:
    8758963
  • 财政年份:
    2009
  • 资助金额:
    $ 31.59万
  • 项目类别:
Computer-based assessment of tumor microenvironment (TME) in Follicular Lymphoma
基于计算机的滤泡性淋巴瘤肿瘤微环境 (TME) 评估
  • 批准号:
    9277412
  • 财政年份:
    2009
  • 资助金额:
    $ 31.59万
  • 项目类别:

相似国自然基金

多溴联苯醚通过肠道菌群诱导维汉成人2型糖尿病的发生及抗氧化膳食模式的拮抗作用研究
  • 批准号:
    82160605
  • 批准年份:
    2021
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
DDX11突变通过激活P38MAPK/PI3K/Akt/CREB信号通路调控钙调蛋白结合蛋白促进成人AML复发的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
I型干扰素通过下调FOXO3介导NLRC4/NLRP3激活触发成人Still病炎症风暴的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrating Genomic Risk Assessment for Chronic Disease Management in a Diverse Population
整合基因组风险评估以进行不同人群的慢性病管理
  • 批准号:
    10852376
  • 财政年份:
    2023
  • 资助金额:
    $ 31.59万
  • 项目类别:
Informing alcohol policy: The impact of evidence-based alcohol warnings on consumption
告知酒精政策:基于证据的酒精警告对消费的影响
  • 批准号:
    10565120
  • 财政年份:
    2023
  • 资助金额:
    $ 31.59万
  • 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
  • 批准号:
    10762645
  • 财政年份:
    2023
  • 资助金额:
    $ 31.59万
  • 项目类别:
Longitudinal Study of Health and Ageing in Kenya (LOSHAK)
肯尼亚健康与老龄化纵向研究 (LOSHAK)
  • 批准号:
    10427945
  • 财政年份:
    2022
  • 资助金额:
    $ 31.59万
  • 项目类别:
Social determinants of substance use disorder treatment outcomes in a vulnerable population
弱势群体物质使用障碍治疗结果的社会决定因素
  • 批准号:
    10352689
  • 财政年份:
    2022
  • 资助金额:
    $ 31.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了