Computer-based assessment of tumor microenvironment (TME) in Follicular Lymphoma
基于计算机的滤泡性淋巴瘤肿瘤微环境 (TME) 评估
基本信息
- 批准号:9277412
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2017-11-03
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAffectAgeAmerican Cancer SocietyArchivesBiologicalBiometryClinicalClinical InvestigatorColorCommunitiesComputer softwareComputer-Assisted DiagnosisComputer-Assisted Image AnalysisComputersConsensusCustomDataDevelopmentDiagnosisDiseaseFollicular LymphomaFosteringFundingGeneral HospitalsGoalsHealthHemoglobinHistopathologic GradeImage AnalysisIndolentInternational Prognostic IndexLactate DehydrogenaseLymphoid TissueLymphomaMalignant neoplasm of prostateMeasuresMissionModelingNodalNon-Hodgkin&aposs LymphomaOhioOncologistOutcomeOutcome MeasurePathologicPathologistPathologyPatient riskPatientsPerformancePerformance StatusPublic HealthPublicationsRadiology SpecialtyReportingResearchResearch DesignResearch PersonnelRiskSerumSiteSlideStaining methodStainsStratificationSystemSystems AnalysisTechniquesTimeTissuesTranslatingUnited States National Institutes of HealthUniversitiesValidationWestern Worldbasecancer imagingclinical predictorsclinically relevantcompare effectivenessdigital imagingdisorder riskevidence baseexperiencehigh riskhigh risk populationimmunohistochemical markersimprovedindexingindividualized medicineinnovationmalignant breast neoplasmmicroscopic imagingneoplasticnoveloutcome forecastpatient stratificationpredictive modelingprognosticprognostic valuepublic health relevanceradiological imagingtargeted treatmenttreatment choicetumortumor microenvironment
项目摘要
DESCRIPTION (provided by applicant): The overall goals of this proposal are to: 1) Measure the prognostic impact of histologic grade (without and with computer assistance) of follicular lymphoma cases by comparing it with outcome measures; and 2) to develop a computer-assisted image analysis (CaIA) system to quantitatively assess the FL tumor microenvironment (TME); 3) Compare the effectiveness of combined prognostic measure incorporating grade (without and with computer assistance), TME parameters and existing FLIPI score. The proposed research aims to develop a clinically relevant, pathology-based prognostic model in FL utilizing computer image analysis to incorporate grade, tumor microenvironment (TME), and immunohistochemical (IHC) markers. Due to the variable clinical course in FL and increasing treatment options, a prognostic index would allow therapies to be tailored to the patient. Patients
with high risk disease may benefit form more intensive therapy, while patients with low risk disease may be appropriate for lower intensity therapy with a more favorable side effect profile. Furthermore, a prognostic index, which includes pathologic features, may ultimately become more relevant in the era of biologically targeted therapies. Our objective is to use advanced image analysis techniques to perform a quantitative and topographical study of the normal and tumor microenvironment and use this study as well as improved and consistent grading options in improving the current prognostic index. Our long-term goal is to translate the improved prognostic index results as better treatment options to FL patients. We plan to pursue the following three specific aims for this project: Specific Aim 1: Measure the prognostic impact of histologic grade (without and with computer assistance) of follicular lymphoma cases by comparing it with outcome measures; Specific Aim 2: Measure the impact of FL tumor microenvironment by comparing TME parameters with outcome measures; Specific Aim 3: Compare the effectiveness of combined prognostic measure incorporating grade (without and with computer assistance), TME parameters and existing FLIPI score. We have formed an experienced team with expertise in FL pathology and oncology, imaging and image analysis, observer studies and biostatistics. Successful completion of this project will exert a sustained and powerful impact on the field by the virtue of its development of a platform for researchers and clinicians to quantitatively and objectively evaluate FL TME, to improve the FL grading, and to incorporate these developments to form a better prognostic index. Microscopic image analysis software, which will be developed for quantification, will be usable for other diseases such as breast cancer, for which TME is also known to be an important predictor of clinical status. The software and data to carry out this project will be made freely available to the research community.
描述(由申请人提供):该提案的总体目标是: 1) 通过与结果指标进行比较,衡量滤泡性淋巴瘤病例的组织学分级(有和没有计算机辅助)的预后影响; 2)开发计算机辅助图像分析(CaIA)系统来定量评估FL肿瘤微环境(TME); 3) 比较结合分级(无计算机辅助和有计算机辅助)、TME 参数和现有 FLIPI 评分的综合预后测量的有效性。拟议的研究旨在利用计算机图像分析来整合分级、肿瘤微环境 (TME) 和免疫组织化学 (IHC) 标记,开发临床相关的、基于病理学的 FL 预后模型。由于 FL 临床病程的可变性和治疗选择的增加,预后指数将允许针对患者量身定制治疗方案。患者
患有高风险疾病的患者可能会受益于更强化的治疗,而患有低风险疾病的患者可能适合较低强度的治疗,且副作用更有利。此外,包括病理特征在内的预后指数最终可能在生物靶向治疗时代变得更加重要。我们的目标是使用先进的图像分析技术对正常和肿瘤微环境进行定量和地形研究,并利用这项研究以及改进和一致的分级选项来改善当前的预后指数。我们的长期目标是将改善的预后指数结果转化为 FL 患者更好的治疗选择。我们计划实现该项目的以下三个具体目标: 具体目标 1:通过将滤泡性淋巴瘤病例的组织学分级(无计算机辅助和有计算机辅助)与结果指标进行比较来衡量其预后影响;具体目标 2:通过比较 TME 参数与结果指标来衡量 FL 肿瘤微环境的影响;具体目标 3:比较包含分级(无计算机辅助和有计算机辅助)、TME 参数和现有 FLIPI 评分的综合预后测量的有效性。我们组建了一支经验丰富的团队,在 FL 病理学和肿瘤学、成像和图像分析、观察者研究和生物统计学方面拥有专业知识。该项目的成功完成将为研究人员和临床医生开发一个平台来定量、客观地评估 FL TME,提高 FL 分级,并将这些进展纳入到更好的预后指数。将为量化而开发的显微图像分析软件将可用于其他疾病,例如乳腺癌,TME 也被认为是临床状态的重要预测因子。执行该项目的软件和数据将免费提供给研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Metin Nafi Gurcan其他文献
Analysis of gene expression dynamics and differential expression in viral infections using generalized linear models and quasi-likelihood methods
使用广义线性模型和拟似然方法分析病毒感染中的基因表达动态和差异表达
- DOI:
10.3389/fmicb.2024.1342328 - 发表时间:
2024-04-09 - 期刊:
- 影响因子:5.2
- 作者:
Mostafa Rezapour;Stephen J. Walker;David A. Ornelles;P. M. McNutt;Anthony Atala;Metin Nafi Gurcan - 通讯作者:
Metin Nafi Gurcan
Employing machine learning to enhance fracture recovery insights through gait analysis.
利用机器学习通过步态分析增强骨折恢复洞察力。
- DOI:
10.1002/jor.25837 - 发表时间:
2024-04-10 - 期刊:
- 影响因子:0
- 作者:
Mostafa Rezapour;Rachel B. Seymour;Stephen H. Sims;M. Karunakar;Nahir A. Habet;Metin Nafi Gurcan - 通讯作者:
Metin Nafi Gurcan
A comparative analysis of RNA-Seq and NanoString technologies in deciphering viral infection response in upper airway lung organoids
RNA-Seq 和 NanoString 技术在破译上呼吸道肺类器官病毒感染反应方面的比较分析
- DOI:
10.3389/fgene.2024.1327984 - 发表时间:
2024-06-18 - 期刊:
- 影响因子:3.7
- 作者:
Mostafa Rezapour;Stephen J. Walker;David A. Ornelles;Muhammad Khalid Khan Niazi;Patrick M. McNutt;Anthony Atala;Metin Nafi Gurcan - 通讯作者:
Metin Nafi Gurcan
Gene PointNet for Tumor Classification
用于肿瘤分类的 Gene PointNet
- DOI:
10.1101/2024.06.02.597020 - 发表时间:
2024-06-03 - 期刊:
- 影响因子:0
- 作者:
Hao Lu;Mostafa Rezapour;Haseebullah Baha;M. K. K. Niazi;Aarthi Narayanan;Metin Nafi Gurcan - 通讯作者:
Metin Nafi Gurcan
Metin Nafi Gurcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Metin Nafi Gurcan', 18)}}的其他基金
Efficient and cost-effective breast cancer risk stratification using whole slide histopathology images
使用全玻片组织病理学图像进行高效且经济的乳腺癌风险分层
- 批准号:
10649978 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10631379 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10701848 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Analytics & Machine-learning for Maternal-health Interventions (AMMI): A Cross-CTSA Collaboration
分析
- 批准号:
10670448 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10631379 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Auto-Scope Software-Automated Otoscopy to Diagnose Ear Pathology
Auto-Scope 软件 - 用于诊断耳部病理的自动耳镜检查
- 批准号:
9790958 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Pathology Image Informatics Platform for visualization, analysis and management
用于可视化、分析和管理的病理图像信息学平台
- 批准号:
9341177 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Computer-based assessment of tumor microenvironment (TME) in Follicular Lymphoma
基于计算机的滤泡性淋巴瘤肿瘤微环境 (TME) 评估
- 批准号:
8758963 - 财政年份:2009
- 资助金额:
$ 2.04万 - 项目类别:
Computer-assisted Grading and Risk Stratification of Follicular Lymphoma
滤泡性淋巴瘤的计算机辅助分级和风险分层
- 批准号:
7812178 - 财政年份:2009
- 资助金额:
$ 2.04万 - 项目类别:
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Impact of Body Composition and Related Inflammatory and Immune States on Prognosis of Non-Muscle Invasive Bladder Cancer
身体成分及相关炎症和免疫状态对非肌肉浸润性膀胱癌预后的影响
- 批准号:
10674401 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM) Research Core & MHD-CE
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686545 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别: