Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
基本信息
- 批准号:10810459
- 负责人:
- 金额:$ 1.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAmyloid FibrilsAmyloid beta-ProteinAnimal ModelBlood GlucoseCryoelectron MicroscopyDefectDevelopmentDiabetes MellitusDiseaseEngineeringEnzyme Inhibitor DrugsEnzymesFamilyFoundationsGlucagonGoalsHormonesHumanInsulinInsulinaseKnowledgeLinkMechanicsMetalloproteasesMethodsModelingMolecularMolecular ConformationMotionMusNon-Insulin-Dependent Diabetes MellitusPeptide HydrolasesPeptidesPhysiologicalProcessProteomeRegulationResearchRoleTimeUnited States National Institutes of HealthWorkamyloid peptidecombatcytotoxicdesignimage processingimprovedinnovationislet amyloid polypeptidemembermonomernovelparent grantscreeningsimulationsmall moleculetime use
项目摘要
Abstract of Parent grant (NIH R01 GM121964):
Aggregates of amyloid peptides, such as amyloid fibrils are highly cytotoxic, as exemplified by the role of amyloid
β (Aβ) in Alzheimer's disease. To maintain a healthy proteome, a number of proteases target the monomeric
form of amyloid peptides because this form fuels both seeding and elongation of amyloid fibrils. Insulin degrading
enzyme (IDE) is a 110 kDa metalloprotease that degrades various amyloid peptides, including Aβ and three
blood glucose-regulating hormones, namely insulin, amylin, and glucagon. Defects in IDE alter the progression
of type 2 diabetes mellitus and Alzheimer’s disease in animal models and are linked to these diseases in humans.
IDE inhibitors can control blood glucose level in mice and hold promise for treating diabetes. One of the key
steps in the IDE catalytic cycle is the selective recognition and unfolding of amyloid peptides prior to degradation.
Our premise is that the understudied conformational dynamics of IDE provide the mechanical basis for the
unfolding of peptide substrates. Thus, we can leverage our understanding of these processes to selectively
modulate the activity of IDE towards specific substrates. Our long-term goals are to elucidate the molecular
details of how IDE selectively recognizes amyloid peptides and utilize this knowledge to develop novel IDE-
based therapies to improve the human condition. Toward this goal, we have integrated ensemble structural
determination and solution-based methods to show that IDE is a member of the chamber-containing protease,
aka cryptidase, family that uses a sizable catalytic chamber to engulf monomeric amyloid peptides. We have
also generated a working model that explains how IDE uses two key conformational switches to selectively
degrade amyloid peptides. Our objectives for this application are to determine key unsolved conformational
states and probe the conformational dynamics of IDE during the catalytic cycle by applying state-of-art integrative
structural approaches. We will then combine MD simulation and screening to identify strategies to modulate the
catalytic activity and selectivity of IDE. Our research rationale is that a deeper understanding of the regulation
and functions of IDE will allow us to modulate its activity through engineering or novel small molecules and
ultimately facilitate the design of IDE-based therapies to combat proteostatic imbalances. We will use time-
resolved cryoEM and SAXS to understand the structural basis for substrate recognition during the key time
window when IDE first encounters substrate in combination with advanced cryoEM image processing algorithms
and MD simulation to address how IDE motions can unfold physiologically relevant substrates. We will apply the
knowledge gained from the substrate recognition and unfolding studies to develop a screening strategy to identify
methods to selectively modulate the degradation of Aβ by IDE. This work will significantly enhance our
understanding of the IDE catalytic cycle by defining key conformational states under physiologically relevant
conditions and offer a platform to merge integrative structural analysis and MD simulation towards the discovery
of innovative enzyme modulating strategies as the developmental foundation of novel IDE-based therapies.
家长资助摘要(NIH R01 GM121964):
淀粉样蛋白肽的聚集体,例如淀粉样蛋白原纤维,具有高度细胞毒性,淀粉样蛋白的作用就证明了这一点
阿尔茨海默病中的β (Aβ) 为了维持健康的蛋白质组,许多蛋白酶以单体为目标。
淀粉样肽的形式,因为这种形式促进淀粉样原纤维的播种和伸长。
酶 (IDE) 是一种 110 kDa 金属蛋白酶,可降解各种淀粉样肽,包括 Aβ 和三种淀粉样肽
血糖调节激素,即胰岛素、胰岛淀粉样多肽和胰高血糖素,IDE 的缺陷会改变进展。
动物模型中的 2 型糖尿病和阿尔茨海默氏病的发病率很高,并且与人类的这些疾病有关。
IDE抑制剂可以控制小鼠的血糖水平,有望成为治疗糖尿病的关键之一。
IDE 催化循环中的步骤是在降解之前选择性识别和解折叠淀粉样肽。
我们的前提是,IDE 中正在研究的构象动力学为
因此,我们可以利用我们对这些过程的理解来选择性地展开。
调节 IDE 对特定底物的活性我们的长期目标是阐明分子。
IDE 如何选择性识别淀粉样肽并利用这些知识开发新型 IDE 的详细信息
为了改善人类状况,我们整合了整体结构。
测定和基于溶液的方法表明 IDE 是含有蛋白酶的室的成员,
又名隐酶,使用相当大的催化室来吞噬单体淀粉样肽的家族。
还生成了一个工作模型,解释了 IDE 如何使用两个关键的构象开关来选择性地
降解淀粉样肽 我们此应用的目标是确定关键的未解决的构象。
通过应用最先进的综合技术,状态并探讨催化循环期间 IDE 的构象动力学
然后,我们将结合MD模拟和筛选来确定调节策略。
我们的研究理由是更深入地了解IDE的催化活性和选择性。
IDE 的功能和功能将使我们能够通过工程或新型小分子来调节其活性
最终促进基于 IDE 的疗法的设计,以对抗蛋白质稳态失衡。
解析cryoEM和SAXS,了解关键时间底物识别的结构基础
IDE 首次遇到基材时的窗口与先进的冷冻电镜图像处理算法相结合
我们将应用 MD 模拟来解决 IDE 运动如何展开生理相关底物的问题。
从底物识别和展开研究中获得的知识,以制定筛选策略来识别
通过 IDE 选择性调节 Aβ 降解的方法将显着增强我们的研究成果。
通过定义生理相关下的关键构象状态来理解 IDE 催化循环
条件并提供一个平台,将综合结构分析和 MD 模拟结合起来以实现发现
创新酶调节策略作为新型 IDE 疗法的开发基础。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Catalytic Mechanism of Amyloid-β Peptide Degradation by Insulin Degrading Enzyme: Insights from Quantum Mechanics and Molecular Mechanics Style Møller-Plesset Second Order Perturbation Theory Calculation.
胰岛素降解酶降解淀粉样蛋白-β 肽的催化机制:量子力学和分子力学风格 Mäller-Plesset 二阶微扰理论计算的见解。
- DOI:
- 发表时间:2018-09-24
- 期刊:
- 影响因子:0
- 作者:Lai, Rui;Tang, Wei;Li, Hui
- 通讯作者:Li, Hui
Reinvestigating the synthesis and efficacy of small benzimidazole derivatives as presequence protease enhancers.
重新研究小苯并咪唑衍生物作为前序列蛋白酶增强剂的合成和功效。
- DOI:10.1016/j.ejmech.2019.111746
- 发表时间:2019-12-01
- 期刊:
- 影响因子:6.7
- 作者:Nan;W. Liang;J. Piccirilli;Wei
- 通讯作者:Wei
Identification of ebselen as a potent inhibitor of insulin degrading enzyme by a drug repurposing screening.
通过药物再利用筛选鉴定依布硒啉是胰岛素降解酶的有效抑制剂。
- DOI:10.1016/j.ejmech.2019.06.057
- 发表时间:2019-10-01
- 期刊:
- 影响因子:6.7
- 作者:F. Leroux;D. Bosc;Terence B Beghyn;Paul Hermant;S;rine Warenghem;rine;V. L;ry;ry;Virginie Pottiez;Vale
- 通讯作者:Vale
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WEI-JEN TANG其他文献
WEI-JEN TANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WEI-JEN TANG', 18)}}的其他基金
Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
- 批准号:
10490454 - 财政年份:2017
- 资助金额:
$ 1.16万 - 项目类别:
Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
- 批准号:
10367488 - 财政年份:2017
- 资助金额:
$ 1.16万 - 项目类别:
Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
- 批准号:
10684300 - 财政年份:2017
- 资助金额:
$ 1.16万 - 项目类别:
ANALYZE THE COMPLEX PROTEIN ASSEMBLY USING SAXS
使用 SAXS 分析复杂的蛋白质组装
- 批准号:
8361305 - 财政年份:2011
- 资助金额:
$ 1.16万 - 项目类别:
SAXS OF THE COMPLEX OF ANTHRAX TOXINS AND HUMAN INSULIN DEGRADING ENZYME
炭疽毒素与人胰岛素降解酶复合物的SAXS
- 批准号:
8168652 - 财政年份:2010
- 资助金额:
$ 1.16万 - 项目类别:
PRESEQUENCE PEPTIDASE IN NATIVE OR COMPLEXED WITH SUBSTRATES
天然或与底物复合的前序列肽酶
- 批准号:
7956813 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
INSULIN DEGRADING ENZYME IN COMPLEX WITH NATRIURETIC PEPTIDES
胰岛素降解酶与钠尿肽的复合物
- 批准号:
7956832 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
INSULIN DEGRADING ENZYME IN COMPLEX WITH THE NOVEL SUBSTRATES
胰岛素降解酶与新型底物的复合物
- 批准号:
7956828 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
Regulation and Catalysis of Human Insulin Degrading Enzyme
人胰岛素降解酶的调控与催化
- 批准号:
7898366 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
INSULIN DEGRADING ENZYME IN COMPLEX WITH NATRIURETIC PEPTIDES
胰岛素降解酶与钠尿肽的复合物
- 批准号:
7956832 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别: