Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation

行政补充:剪接体组装与调控机制

基本信息

  • 批准号:
    10807767
  • 负责人:
  • 金额:
    $ 1.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT RNA splicing is a key feature of human gene expression and a major contributor to expansion of genetic information by alternative splicing. Splicing is carried out by a large and dynamic cellular machine called the spliceosome. Spliceosomes are composed of small nuclear ribonucleoproteins (snRNPs) that assemble on precursor transcripts (pre-mRNAs) to remove introns and splice together exons. This process must occur precisely in order to preserve the genetic information carried in the mRNA. Critical for splicing is the correct identification of the sites of RNA bond cleavage and formation [the 5' and 3' splice sites (SS) and the branch site (BS)]. A number of different ATPases contribute to the fidelity of SS and BS recognition as well as carry out extensive compositional and conformational remodeling of the spliceosome. Recently, biochemical studies of splicing have been transformed by determination of dozens of different structures of yeast and human spliceosomes by cryo-EM. Despite this structural revolution, much remains unknown about central features of the splicing reaction. The goal of my laboratory’s research is to elucidate mechanisms of spliceosome assembly and regulation in biochemical depth using a variety of techniques. We often use single molecule fluorescence microscopy to deconvolute the complex and heterogeneous reaction pathways employed by the splicing machinery. In recent work, we have studied mechanisms of 5'SS and BS recognition, assembly and dynamics of the U6 snRNP, and developed methods for fluorescently-labeling, purifying, and inhibiting RNAs and RNPs. Our vision for the next five years is to merge the insights obtained from structures of spliceosomes with single molecule, biochemical, computational, and genetic experiments to address outstanding gaps in our knowledge of splicing. These gaps include fundamental principles of RNP folding and assembly, the mechanisms of regulated splicing, and the scarcity of specific and effective chemical inhibitors of the spliceosome. As part of this vision, we will answer the following questions using multi-disciplinary approaches: 1) How do RNA and protein co-fold to assemble the U6 snRNP? 2) How is the spliceosome remodeled during creation of its active site? 3) How do regulatory proteins promote splicing at weak 5'SS? 4) How can we block ATPase-dependent transitions during splicing with small molecule inhibitors? 5) How do we quantitatively analyze, compare, and integrate cryo-EM structures of spliceosomes?
项目概要/摘要 RNA剪接是人类基因表达的一个关键特征,也是遗传扩展的主要贡献者。 选择性剪接的信息是由称为“可变剪接”的大型动态细胞机器进行的。 剪接体由组装在核上的小核糖核蛋白 (snRNP) 组成。 前体转录物(前 mRNA)去除内含子并将外显子拼接在一起,这个过程必须发生。 正是为了保存 mRNA 中携带的遗传信息,剪接的关键是正确的。 鉴定 RNA 键裂解和形成的位点 [5' 和 3' 剪接位点 (SS) 和分支 许多不同的ATP酶有助于SS和BS识别以及携带的保真度。 最近,生化研究对剪接体进行了广泛的组成和构象重塑。 通过测定酵母和人类的数十种不同结构,剪接的方式发生了变化 尽管发生了这种结构革命,但关于剪接体的核心特征仍然有很多未知之处。 我实验室的研究目标是阐明剪接体的机制。 我们经常使用单分子进行生化深度组装和调节。 荧光显微镜对复杂且异质的反应途径进行解卷积 在最近的工作中,我们研究了5'SS和BS的识别、组装和机制。 U6 snRNP 的动力学,并开发了荧光标记、纯化和抑制 RNA 的方法 我们未来五年的愿景是融合从剪接体结构中获得的见解。 通过单分子、生化、计算和遗传实验来解决我们的突出差距 这些差距包括 RNP 折叠和组装的基本原理、 调控剪接的机制,以及缺乏特异性和有效的化学抑制剂 作为这一愿景的一部分,我们将使用多学科方法回答以下问题: 1) RNA和蛋白质如何共折叠组装U6 snRNP? 2)剪接体在其活性位点创建过程中是如何重塑的? 3) 调节蛋白如何促进弱 5'SS 处的剪接? 4) 我们如何用小分子抑制剂阻断剪接过程中 ATP 酶依赖性转变? 5)我们如何定量分析、比较和整合剪接体的冷冻电镜结构?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Andrew Hoskins其他文献

Aaron Andrew Hoskins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Andrew Hoskins', 18)}}的其他基金

Mechanisms of Spliceosome Assembly and Regulation
剪接体组装和调控机制
  • 批准号:
    10393514
  • 财政年份:
    2020
  • 资助金额:
    $ 1.04万
  • 项目类别:
Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation
行政补充:剪接体组装与调控机制
  • 批准号:
    10378361
  • 财政年份:
    2020
  • 资助金额:
    $ 1.04万
  • 项目类别:
Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation
行政补充:剪接体组装与调控机制
  • 批准号:
    10169637
  • 财政年份:
    2020
  • 资助金额:
    $ 1.04万
  • 项目类别:
Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation
行政补充:剪接体组装与调控机制
  • 批准号:
    10797871
  • 财政年份:
    2020
  • 资助金额:
    $ 1.04万
  • 项目类别:
Mechanisms of Spliceosome Assembly and Regulation
剪接体组装和调控机制
  • 批准号:
    10608952
  • 财政年份:
    2020
  • 资助金额:
    $ 1.04万
  • 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Recognition
剪接体组装和剪接位点识别的机制
  • 批准号:
    8996582
  • 财政年份:
    2015
  • 资助金额:
    $ 1.04万
  • 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
  • 批准号:
    8325655
  • 财政年份:
    2008
  • 资助金额:
    $ 1.04万
  • 项目类别:
Single Molecule Analysis of Spliceosome Catalysis and Fidelity
剪接体催化和保真度的单分子分析
  • 批准号:
    7570401
  • 财政年份:
    2008
  • 资助金额:
    $ 1.04万
  • 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
  • 批准号:
    8535781
  • 财政年份:
    2008
  • 资助金额:
    $ 1.04万
  • 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
  • 批准号:
    8308082
  • 财政年份:
    2008
  • 资助金额:
    $ 1.04万
  • 项目类别:

相似国自然基金

乙肝病毒5’剪接位点调节病毒转录和复制的研究
  • 批准号:
    32370165
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
12q13.11区易感位点通过调控COL2A1可变剪接影响骨关节炎发生的机制研究
  • 批准号:
    82372458
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
拟南芥ROE1蛋白介导剪接体识别内含子的5’剪接位点和调控其剪接效率的分子机理研究
  • 批准号:
    32171293
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
由隐含剪接位点产生的EZH2新亚型的分子功能及其在心肌肥厚中的作用
  • 批准号:
    82070231
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
面向第三代RNA测序长读段的定位算法研究
  • 批准号:
    61862017
  • 批准年份:
    2018
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The role of U1 snRNP proteins in snRNP biogenesis and gene expression regulation
U1 snRNP 蛋白在 snRNP 生物发生和基因表达调控中的作用
  • 批准号:
    10796664
  • 财政年份:
    2023
  • 资助金额:
    $ 1.04万
  • 项目类别:
Understanding the mechanism of pre-mRNA splicing
了解前体 mRNA 剪接的机制
  • 批准号:
    10387298
  • 财政年份:
    2022
  • 资助金额:
    $ 1.04万
  • 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
  • 批准号:
    10894365
  • 财政年份:
    2022
  • 资助金额:
    $ 1.04万
  • 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
  • 批准号:
    10351379
  • 财政年份:
    2022
  • 资助金额:
    $ 1.04万
  • 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
  • 批准号:
    10548142
  • 财政年份:
    2022
  • 资助金额:
    $ 1.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了