Administrative Supplements to Support Undergraduate Summer Research Experiences - Inhibition of Human Islet Amyloid Polypeptide Aggregation
支持本科生暑期研究经验的行政补充 - 抑制人胰岛淀粉样多肽聚集
基本信息
- 批准号:10810285
- 负责人:
- 金额:$ 1.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:Administrative SupplementAlzheimer&aposs DiseaseAmyloidAmyloid FibrilsAmyloid ProteinsAmyloidosisArtificial nanoparticlesBacterial InfectionsBeta CellBiologicalCell DeathCell membraneComputer ModelsCryoelectron MicroscopyDevelopmentDiabetes MellitusDiseaseEngineeringEnvironmentGoalsHumanImmune responseIn VitroInsulinLengthMediatingMembraneMolecularNatureNeurodegenerative DisordersNon-Insulin-Dependent Diabetes MellitusOutcomeParkinson DiseasePathologicProcessProteinsResearchRisk FactorsSpecificityStructureSystemTherapeuticTimeToxic effectValidationbasebeta pleated sheetcytotoxicitydesigndiabeticdysbiosisexperienceimprovedinhibitorinsightislet amyloid polypeptidemonomernanomedicinenanoparticlenanotoxicitynew therapeutic targetnovelnovel strategiespeptide hormonepreventstructural biologysummer researchundergraduate student
项目摘要
Abstract
Amyloid aggregation of islet amyloid polypeptide (IAPP) is associated with β-cell death in type-2 diabetes
(T2D). IAPP, a peptide hormone co-secreted with insulin by β-cells, is one of the most amyloidogenic proteins
and readily forms amyloid fibrils in vitro. Mounting evidence suggests that inhibition of IAPP aggregation and
aggregation-mediated cytotoxicity, our long-term goal, is an attractive therapeutic strategy to prevent β-cell
death and stop the progression of diabetic conditions in T2D. With the recent advances of Cryo-EM in
Structural Biology, atomic structures of IAPP fibrils have been solved, comprised of parallel in-register β-sheets
as the cross-β core. However, due to heterogeneous and transient nature of oligomer intermediates populated
during aggregation, many details of the process from isolated monomers to final fibrils are still unknown. With
amyloid toxicity likely mediated by direct or indirect interactions with the cell membrane, it is increasingly
important to study the aggregation of IAPP in the membrane environment. Increasing evidence also suggests
pathological correlations between different amyloid diseases – e.g., T2D is the risk factor of neurodegenerative
diseases, including Alzheimer’s and Parkinson’s diseases; and bacterial amyloids may contribute to the onset
of neurodegenerative diseases and diabetes. Cross-interactions between different amyloid proteins at the
molecular level might contribute to the pathological correlation between corresponding diseases. We have
demonstrated that novel nanoparticles can be engineered to mitigate hIAPP aggregation and cytotoxicity.
Despite many advantages including the ability to cross biological barriers, major concerns for nanomedicine
development include potential toxicity associated with immune responses and the lack of specificity. In this
MIRA renewal application, the PI proposes to continuously uncover molecular mechanisms of IAPP
aggregation and to explore novel nanoparticle approaches to inhibit IAPP aggregation and toxicity in the
following directions: 1) IAPP aggregation and interactions with the membrane; 2) cross-interactions between
hIAPP and other amyloidogenic proteins; and 3) mitigation of IAPP amyloidosis with nanoparticles
functionalized by endogenous inhibitors. The PI lab will combine computational modeling with experimental
characterization and validation. Computational modeling can help bridge the time and length scale gaps
between experimental observations and the underlying molecular systems, providing not only molecular
insights to experimental observations but also offering experimentally-testable hypotheses. Such a combined
computational and experimental approach can improve research efficiency and shorten discovery cycle. The
outcome of the proposed studies will help understand disease mechanisms and discover novel therapeutic
targets (Project 1); provide molecular bases for pathological correlations between T2D and other amyloid
diseases, and the contribution of bacterial infections and dysbiosis to the onset of T2D (Project 2); and offer
new approaches to design anti-amyloid nanoparticles with high specificity and reduced nanotoxicity (Project 3).
1
抽象的
胰岛淀粉样多肽 (IAPP) 的淀粉样蛋白聚集与 2 型糖尿病中的 β 细胞死亡相关
(T2D),IAPP 是一种由 β 细胞与胰岛素共同分泌的肽激素,是最容易产生淀粉样蛋白的蛋白之一。
并在体外容易形成淀粉样原纤维,越来越多的证据表明抑制 IAPP 聚集和
聚集介导的细胞毒性是我们的长期目标,是预防 β 细胞损伤的一种有吸引力的治疗策略
随着冷冻电镜在 T2D 领域的最新进展,死亡并阻止糖尿病病情的进展。
结构生物学,IAPP 原纤维的原子结构已得到解决,由平行对准的 β-折叠组成
然而,由于低聚物中间体的异质性和瞬态性,
在聚集过程中,从分离的单体到最终原纤维的过程的许多细节仍然未知。
淀粉样蛋白毒性可能是通过与细胞膜直接或间接相互作用介导的,因此越来越多
越来越多的证据也表明,研究 IAPP 在膜环境中的聚集很重要。
不同淀粉样蛋白疾病之间的病理相关性 - 例如,T2D 是神经退行性疾病的危险因素
疾病,包括阿尔茨海默病和帕金森病;细菌淀粉样蛋白可能导致发病
神经退行性疾病和糖尿病之间的交叉相互作用。
分子水平可能有助于相应疾病之间的病理相关性。
新型纳米粒子可以被设计来减轻 hIAPP 聚集和细胞毒性。
尽管有许多优点,包括跨越生物屏障的能力,但纳米医学的主要问题
发展包括与免疫反应相关的潜在毒性和缺乏特异性。
MIRA更新应用,PI提出持续揭示IAPP分子机制
聚集并探索抑制 IAPP 聚集和毒性的新型纳米颗粒方法
以下方向:1) IAPP 聚集以及与膜的相互作用;2) 之间的交叉相互作用;
hIAPP 和其他淀粉样蛋白;3) 用纳米颗粒减轻 IAPP 淀粉样变性
PI 实验室将通过内源性抑制剂进行功能化,将计算模型与实验相结合。
表征和验证可以帮助弥合时间和长度尺度的差距。
实验观察和底层分子系统之间,不仅提供分子
对实验观察的见解,同时也提供了这样一个可通过实验检验的假设。
计算和实验方法可以提高研究效率并缩短发现周期。
拟议研究的结果将有助于了解疾病机制并发现新的治疗方法
目标(项目 1);为 T2D 和其他淀粉样蛋白之间的病理相关性提供分子基础
疾病,以及细菌感染和生态失调对 T2D 发病的影响(项目 2);
设计具有高特异性和降低纳米毒性的抗淀粉样蛋白纳米颗粒的新方法(项目 3)。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Ding其他文献
Feng Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Ding', 18)}}的其他基金
Inhibition of Human Islet Amyloid Polypeptide Aggregation
人胰岛淀粉样多肽聚集的抑制
- 批准号:
10409213 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Inhibition of Human Islet Amyloid Polypeptide Aggregation
人胰岛淀粉样多肽聚集的抑制
- 批准号:
10704519 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Inhibition of Human Islet Amyloid Polypeptide Aggregation
人胰岛淀粉样多肽聚集的抑制
- 批准号:
10704519 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Inhibition of Human Islet Amyloid Polypeptide Aggregation
人胰岛淀粉样多肽聚集的抑制
- 批准号:
9142674 - 财政年份:2016
- 资助金额:
$ 1.01万 - 项目类别:
Inhibition of Human Islet Amyloid Polypeptide Aggregation
人胰岛淀粉样多肽聚集的抑制
- 批准号:
9340249 - 财政年份:2016
- 资助金额:
$ 1.01万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dissecting the Role of Arachidonic Acid Metabolic Pathways Involved in Resolution Versus Progression of PM-Induced Cardiometabolic Toxicity
剖析花生四烯酸代谢途径在 PM 诱导的心脏代谢毒性的消退与进展中的作用
- 批准号:
10716093 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Stroke Connectome MRI biomarkers for VCID risk assessment
用于 VCID 风险评估的中风连接组 MRI 生物标志物
- 批准号:
10887028 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative
推进老年病学基础设施和网络发展 (AGING) 计划
- 批准号:
10732291 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别: