Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
基本信息
- 批准号:10841899
- 负责人:
- 金额:$ 3.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAdministrative SupplementAlzheimer&aposs DiseaseBiological ModelsBotulinum ToxinsCalciumCalibrationChemosensitizationClustered Regularly Interspaced Short Palindromic RepeatsCommunicationCouplingDataDefectDevelopmentDiseaseDrosophila genusElectrophysiology (science)EpilepsyEtiologyFailureGenesGeneticGlutamatesGoalsHealthHeterogeneityHomologous GeneIndividualMammalsMental disordersMicroscopyModelingMolecularMolecular MachinesMotorMotor NeuronsMuscleMuscle ContractionMutagenesisNanostructuresNervous SystemNeurodegenerative DisordersNeurodevelopmental DisorderNeuromuscular JunctionNeuronsNeurophysiology - biologic functionOrthologous GenePhasePositioning AttributeProcessPropertyProtein IsoformsRNA SplicingReagentReporterRoleSchizophreniaSiteStructureSynapsesSynaptic plasticitySystemToxic effectVesicleautism spectrum disorderbotulinum toxin type Cexperienceexperimental studyflyimaging approachinnovationinsightnanoscalenervous system disorderneural circuitneuropsychiatric disorderneurotransmissionneurotransmitter releasepostsynapticpresynapticpreventratiometricscaffoldsuperresolution imagingsynaptic functiontransmission processultra high resolution
项目摘要
PROJECT SUMMARY
Synapses are fundamental units of communication in the nervous system, where immense
diversity in structure and function serve to tune and calibrate information transfer. Defects in the
ability of synapses to properly diversify contribute to the etiology of a variety of
neurodevelopmental, psychiatric, and neurodegenerative diseases. One means of generating
diversity in synaptic function is through molecular heterogeneity, where combinations of distinct
genes are expressed at individual synapses to enable specific functional properties. However, it
has become increasingly clear, though difficult to resolve, that remarkable synaptic diversity can
be achieved from a limited set of molecular machinery. In principle, the Drosophila neuromuscular
junction (NMJ) is a uniquely powerful model to address how synaptic diversity is generated given
the sophisticated genetic, electrophysiological, and imaging approaches. In this system, two
distinct motor neurons converge to co-innervate individual muscle targets, where transmission
from a strong and weak input together drive muscle contraction in the motor circuit. However, an
inability to selectively isolate transmission from either input has been a major limitation towards
understanding synaptic diversity in this system. Here, we propose to use expression of a unique
Botulinum NeuroToxin (BoNT) to selectively silence transmission at strong or weak synaptic
inputs. Preliminary data suggests that while each neuron is largely composed of the same
molecular machinery at active zones, one core component, previously thought to function
universally at all active zones, actually subserves dramatically different roles at strong vs weak
synapses. We will use BoNT silencing, super resolution imaging, and the latest calcium reporters
targeted to release sites to illuminate differences in active zone nanostructure and function
between strong and weak synapses. We will also leverage new innovations in CRISPR
mutagenesis to dissect the specialized functions of eight core active zone components at strong
vs weak synapses. Finally, we will interrogate how these core active zone components are
uniquely targeted for modulation and remodeling at strong vs weak synapses in the context of
homeostatic synaptic plasticity. Together, these approaches will unlock fundamental insights into
how glutamatergic synaptic diversity is established and adaptively modified through plasticity.
Ultimately, this understanding will illuminate key mechanisms through which heterogeneous
functional properties at glutamatergic release sites are enabled by a limited molecular toolkit.
项目概要
突触是神经系统中沟通的基本单位,其中巨大的
结构和功能的多样性有助于调整和校准信息传递。缺陷在
突触适当多样化的能力有助于多种疾病的病因学
神经发育、精神和神经退行性疾病。一种生成方式
突触功能的多样性是通过分子异质性实现的,其中不同的组合
基因在各个突触处表达以实现特定的功能特性。然而,它
尽管难以解决,但已经变得越来越清楚,显着的突触多样性可以
可以通过一组有限的分子机器来实现。原则上,果蝇神经肌肉
junction (NMJ) 是一个独特的强大模型,可以解决给定的情况下突触多样性是如何生成的
复杂的遗传、电生理和成像方法。在这个系统中,两个
不同的运动神经元聚集在一起共同神经支配各个肌肉目标,其中传输
强输入和弱输入共同驱动运动回路中的肌肉收缩。然而,一个
无法选择性地隔离来自任一输入的传输一直是对
了解该系统中的突触多样性。在这里,我们建议使用独特的表达方式
肉毒杆菌神经毒素 (BoNT) 可选择性地抑制强或弱突触的传递
输入。初步数据表明,虽然每个神经元主要由相同的神经元组成
活性区的分子机械,一个核心组成部分,以前被认为起作用
在所有活跃区域普遍存在,实际上在强弱区域中发挥着截然不同的作用
突触。我们将使用 BoNT 沉默、超分辨率成像和最新的钙报告基因
针对释放位点以阐明活性区纳米结构和功能的差异
强突触和弱突触之间。我们还将利用 CRISPR 的新创新
诱变以强强度剖析八个核心活性区成分的专门功能
与弱突触。最后,我们将询问这些核心活动区域组件是如何
独特地针对强突触和弱突触的调制和重塑
稳态突触可塑性。这些方法共同将解锁对以下问题的基本见解:
谷氨酸突触多样性是如何通过可塑性建立和适应性修改的。
最终,这种理解将阐明异质性的关键机制
谷氨酸释放位点的功能特性是通过有限的分子工具包实现的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DION KAI DICKMAN其他文献
DION KAI DICKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DION KAI DICKMAN', 18)}}的其他基金
Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸突触的分子同质性产生功能多样性
- 批准号:
10583404 - 财政年份:2022
- 资助金额:
$ 3.36万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10062396 - 财政年份:2020
- 资助金额:
$ 3.36万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10757804 - 财政年份:2015
- 资助金额:
$ 3.36万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10335181 - 财政年份:2015
- 资助金额:
$ 3.36万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10523895 - 财政年份:2015
- 资助金额:
$ 3.36万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9412197 - 财政年份:2015
- 资助金额:
$ 3.36万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 3.36万 - 项目类别:
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN)Scientific Leadership Center; ADMIN SUPPLEMENT
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心;
- 批准号:
10855435 - 财政年份:2023
- 资助金额:
$ 3.36万 - 项目类别: