Synaptic Control of Glutamate Homeostasis
谷氨酸稳态的突触控制
基本信息
- 批准号:10117294
- 负责人:
- 金额:$ 36.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAutocrine CommunicationAutoreceptorsBiologicalBiological ModelsCalciumCellsCellular biologyChloride ChannelsChloridesChronicCouplesDataDefectDevelopmentDiseaseDown-RegulationDrosophila genusElectrophysiology (science)EndocytosisEnsureEpilepsyEtiologyExcitatory SynapseFragile X SyndromeFunctional ImagingFunctional disorderGenerationsGeneticGlutamate ReceptorGlutamate TransporterGlutamatesGoalsGrowthHealthHomeostasisHumanImageImaging TechniquesIndividualInvertebratesKnowledgeLeadMediatingMental DepressionModelingMolecularNerve DegenerationNervous system structureNeurogliaNeuromuscular JunctionNeuronsOrganismOutcomePharmacologyPhysiologicalPlayPresynaptic TerminalsProbabilityProcessPropertyRegulationReportingResearchRodentRoleSchizophreniaSeizuresSignal TransductionSiteStimulusStructureSynapsesSynaptic VesiclesSynaptic plasticitySystemTechnologyTestingTherapeuticToxic effectWorkdesignexcitotoxicityexperienceexperimental studyflexibilityglutamate-gated chloride channelglutamatergic signalingin vivoinnovationinsightnervous system disorderneural circuitneuropathologyneuropsychiatric disorderneurotransmissionneurotransmitter releasenovelnovel therapeutic interventionpostsynapticpreservationpresynapticpresynaptic neuronspreventreceptorresponsereuptakesynaptic functiontraffickingtransmission processvesicular release
项目摘要
Homeostatic signaling systems are crucial forms of biological regulation that permit flexible yet
stable information transfer in the nervous system. These fundamental mechanisms operate to
maintain such properties as synaptic strength and glutamate levels within stable physiological
ranges. Although intensive research has been focused on understanding how excitatory synapses
are homeostatically modulated to stabilize synaptic strength, far less is known about how these
synapses adjust to control glutamate release itself. Excess glutamate release can lead to a variety
of diseases and dysfunctions in the nervous system, contributing to seizures, excitotoxity, and
neurodegeneration. Here, we propose to characterize a glutamate homeostat that controls
presynaptic function using the Drosophila neuromuscular junction as a unique and powerful model
system. At this glutamatergic synapse, excess presynaptic glutamate secretion induces a
homeostatic inhibition of neurotransmitter release, an adaptation referred to as presynaptic
homeostatic depression (PHD). This process parallels a similar phenomenon observed in a
variety of other organisms, including mammalian central synapses. We hypothesize that excess
glutamate is sensed by a presynaptic glutamate receptor and activates an autocrine signaling
system to homeostatically depress synaptic vesicle release. To test this model, we will use a
systematic electrophysiology screen to test glutamate receptors in Drosophila for roles in PHD.
Next, we will leverage a combination of cell biology, heterologous expression, pharmacology, and
innovative functional imaging techniques to determine the mechanisms through which excess
glutamate signals a precise reduction in presynaptic vesicle release. Finally, we will assess how
synapses, neurons, and glia adapt to chronic glutamate imbalance using several approaches,
including a cell-specific translational profiling technology we have developed as well as a new
generation of glutamate indicators. Together, these experiments will advance our understanding
of the mechanisms that endow synapses with the ability homeostatically tune glutamate release,
and will identify maladaptive responses to glutamate imbalance in the nervous system. Ultimately,
this knowledge will inform therapeutic strategies towards counteracting diseases associated with
glutamate imbalance, including epilepsy, fragile X syndrome and neurodegeneration.
稳态信号系统是生物调节的重要形式,它允许灵活但
神经系统中稳定的信息传递。这些基本机制的作用是
将突触强度和谷氨酸水平等特性保持在稳定的生理范围内
范围。尽管深入的研究一直集中在了解兴奋性突触如何
被稳态调节以稳定突触强度,但人们对这些神经元如何发挥作用知之甚少。
突触调节以控制谷氨酸本身的释放。过量的谷氨酸释放会导致多种
神经系统疾病和功能障碍,导致癫痫发作、兴奋性中毒和
神经变性。在这里,我们建议表征控制谷氨酸稳态
使用果蝇神经肌肉接头作为独特而强大的模型来研究突触前功能
系统。在这个谷氨酸突触,过量的突触前谷氨酸分泌会诱导
神经递质释放的稳态抑制,一种称为突触前的适应
稳态抑郁症(PHD)。这个过程与在一个实验中观察到的类似现象类似。
各种其他生物体,包括哺乳动物中央突触。我们假设过量
谷氨酸被突触前谷氨酸受体感知并激活自分泌信号
系统稳态抑制突触小泡释放。为了测试这个模型,我们将使用
系统电生理学筛查,测试果蝇谷氨酸受体在 PHD 中的作用。
接下来,我们将结合细胞生物学、异源表达、药理学和
创新的功能成像技术,以确定过量的机制
谷氨酸发出突触前囊泡释放精确减少的信号。最后,我们将评估如何
突触、神经元和神经胶质细胞使用多种方法适应慢性谷氨酸失衡,
包括我们开发的细胞特异性翻译分析技术以及新的
谷氨酸指示剂的产生。这些实验将共同推进我们的理解
赋予突触稳态调节谷氨酸释放能力的机制,
并将识别神经系统中谷氨酸失衡的适应不良反应。最终,
这些知识将为对抗与以下疾病相关的疾病的治疗策略提供信息:
谷氨酸失衡,包括癫痫、脆性 X 综合征和神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DION KAI DICKMAN其他文献
DION KAI DICKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DION KAI DICKMAN', 18)}}的其他基金
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 36.09万 - 项目类别:
Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸突触的分子同质性产生功能多样性
- 批准号:
10583404 - 财政年份:2022
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10062396 - 财政年份:2020
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10757804 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10335181 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10523895 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9412197 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 36.09万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 36.09万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 36.09万 - 项目类别: