Structure and mechanism of membrane enzymes responsible for bacterial lipid modification and polymyxin resistance
负责细菌脂质修饰和多粘菌素抗性的膜酶的结构和机制
基本信息
- 批准号:10713771
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-10 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAntibiotic ResistanceAntibioticsAntimicrobial Cationic PeptidesAntimicrobial ResistanceBacteriaBindingBiochemical ReactionBiological AssayCatalysisChemicalsCryoelectron MicroscopyDevelopmentDrug DesignElectrostaticsEndotoxinsEnzymesEscherichia coliFutureGoalsGram-Negative BacteriaGram-Negative Bacterial InfectionsGrowthHealthHumanIncidenceInfectionInnate Immune SystemLipid ALipidsLipopolysaccharidesMembraneMembrane ProteinsMetalsModificationMolecularMulti-Drug ResistanceMutagenesisPathway interactionsPolymyxin ResistancePolymyxinsPredispositionProtein BiochemistryProteinsPseudomonas aeruginosaResearchResistanceResistance developmentSalmonella entericaStructureTechniquesTherapeuticTrainingantimicrobial drugantimicrobial peptidebacterial geneticscofactordesignenzyme pathwayenzyme structureexperienceglycosyltransferaseinorganic phosphateinsightmultidisciplinarynovel therapeuticspreventprogramsstructural biology
项目摘要
Project Summary/Abstract
Antibiotic resistance is a rapidly growing threat to human health, further exacerbated by the limited
development of new antibiotics. Thus, there is a dire need for research informing the design of new therapeutic
options to counter the rise of antibiotic resistance. Polymyxins are cationic antimicrobial peptides that
associate with the outer membrane of Gram-negative (GN) bacteria through electrostatic interactions and are
considered the last line of defense against multi-drug resistant GN bacterial infections. Yet, resistance to
polymyxins develops often and with relative ease, due to modifications that bacteria have developed as
defenses against antimicrobial peptides (AMPs) produced by the innate immune system or secreted by other
bacterial species. Modification of Lipid A, the lipidic anchor of the bacterial lipopolysaccharide (LPS or
endotoxin) decorating the outer membrane of GN bacteria, with diverse chemical moieties, is a common
mechanism leading to resistance to antimicrobial agents. In E. coli, S. enterica and P. aeruginosa, “capping”
of the phosphates of Lipid A with an aminoarabinose moiety (L-Ara4N) is the predominant modification leading
to resistance against polymyxins and AMPs. The aminoarabinose “cap” is synthesized by GN bacteria through
an enzymatic relay of eight proteins collectively called the aminoarabinose biosynthetic pathway. The
mechanistic basis of function for the membrane enzymes of the pathway is poorly understood, in large part
due to the technical challenges associated with studying enzymes that function at or near the membrane and
utilize lipidic substrates. As part of this research program, we will use a variety of experimental techniques,
including cryo-electron microscopy (cryoEM), mutagenesis, bacterial growth assays, bacterial genetics, and
microscale thermophoresis (MST), to achieve the following core goals: (1) Structure determination and
substrate-binding characterization for the three bona fide membrane enzymes that operate in the
aminoarabinose biosynthetic pathway (the polyprenol phosphate glycosyltransferase ArnC, the deformylase
ArnD and the lipid-to-lipid glycosyltransferase ArnT), and (2) Investigating the mechanistic basis of enzymatic
function, metal cofactor coordination, and catalysis, in each of the three membrane enzymes under study.
The research program will leverage our multidisciplinary training in membrane protein biochemistry and
structural biology, and experience gained from having successfully solved several structures of the enzyme
ArnT bound to different lipidic substrates. The impact of the program lies within its potential to: i) Provide
detailed mechanistic insights into the structural basis of a diverse set of enzymatic functions responsible for
aminoarabinose biosynthesis and polymyxin resistance in GN bacteria, ii) Advance our understanding of
protein-lipid interactions with undecaprenyl phosphate, as all three enzymes under study utilize undecaprenyl
phosphate as either a donor or acceptor substrate, and iii) Inform structure-based drug design of compounds
capable of restoring susceptibility to polymyxins by targeting enzymes of the aminoarabinose pathway.
项目概要/摘要
抗生素耐药性对人类健康构成了迅速增长的威胁,而有限的抗生素耐药性进一步加剧了这一威胁。
因此,迫切需要为新疗法的设计提供研究信息。
对抗抗生素耐药性上升的选择 多粘菌素是阳离子抗菌肽。
通过静电相互作用与革兰氏阴性 (GN) 细菌的外膜结合,
被认为是抵抗多重耐药 GN 细菌感染的最后一道防线。
由于细菌已发展为多粘菌素,多粘菌素经常且相对容易地发展
防御由先天免疫系统产生或由其他系统分泌的抗菌肽(AMP)
脂质 A 的修饰,细菌脂多糖(LPS 或)的脂质锚。
内毒素)装饰 GN 细菌的外膜,具有多种化学基团,是一种常见的细菌
导致大肠杆菌、肠沙门氏菌和铜绿假单胞菌产生耐药性的机制。
脂质 A 的磷酸酯与氨基阿拉伯糖部分 (L-Ara4N) 的修饰是主要的修饰
GN 细菌通过合成氨基阿拉伯糖“帽”来抵抗多粘菌素和 AMP。
八种蛋白质的酶促中继,统称为氨基阿拉伯糖生物合成途径。
该途径的膜酶的功能机制基础在很大程度上知之甚少
由于研究在膜上或膜附近起作用的酶相关的技术挑战,
作为该研究计划的一部分,我们将使用各种实验技术,
包括冷冻电子显微镜 (cryoEM)、诱变、细菌生长测定、细菌遗传学和
微尺度热泳(MST),实现以下核心目标:(1)结构测定和
三种真正的膜酶的底物结合表征
氨基阿拉伯糖生物合成途径(聚戊烯醇磷酸糖基转移酶 ArnC、去甲酰基酶
ArnD 和脂质间糖基转移酶 ArnT),以及 (2) 研究酶促作用的机制基础
所研究的三种膜酶中的每一种的功能、金属辅因子配位和催化作用。
该研究计划将利用我们在膜蛋白生物化学和
结构生物学,以及从成功解决酶的几种结构中获得的经验
ArnT 与不同的脂质底物结合,该计划的影响在于其潜力: i) 提供
对一组不同酶功能的结构基础的详细机制见解
GN 细菌中的氨基阿拉伯糖生物合成和多粘菌素抗性,ii) 增进我们对
蛋白质-脂质与十一异戊二烯基磷酸盐相互作用,因为所研究的所有三种酶都利用十一异戊二烯基
磷酸盐作为供体或受体底物,以及 iii) 为化合物的基于结构的药物设计提供信息
能够通过靶向氨基阿拉伯糖途径的酶来恢复对多粘菌素的敏感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vasileios I Petrou其他文献
Vasileios I Petrou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vasileios I Petrou', 18)}}的其他基金
Structural characterization of APP family proteins
APP 家族蛋白的结构表征
- 批准号:
10648792 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
STRUCTURAL BASIS OF AMINORABINOSE BIOSYNTHESIS LINKED TO POLYMYXIN RESISTANCE
与多粘菌素抗性相关的氨基阿拉伯糖生物合成的结构基础
- 批准号:
10238086 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
STRUCTURAL BASIS OF AMINORABINOSE BIOSYNTHESIS LINKED TO POLYMYXIN RESISTANCE
与多粘菌素抗性相关的氨基阿拉伯糖生物合成的结构基础
- 批准号:
10017248 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
- 批准号:82273586
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Interplay of M. tuberculosis trehalose metabolism and its pathogenesis and drug resistance
结核分枝杆菌海藻糖代谢及其发病机制和耐药性的相互作用
- 批准号:
10585346 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Chemoenzymatic Synthesis of Darobactin Antibiotics
Darobactin抗生素的化学酶法合成
- 批准号:
10592211 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Mechanisms underlying adhesion and colonization in pneumococcal keratitis
肺炎球菌角膜炎粘附和定植的机制
- 批准号:
10727764 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别: