Molecular Mechanisms of Y-Family Translesion Polymerase Activity in Bacillus subtilis
枯草芽孢杆菌 Y 家族跨损伤聚合酶活性的分子机制
基本信息
- 批准号:10730396
- 负责人:
- 金额:$ 49.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceBacillus subtilisBacteriaBindingBinding SitesBiochemicalBiologicalBiological AssayBypassCell DeathCell SurvivalCellsClosure by clampDNADNA DamageDNA RepairDNA Repair GeneDNA Replication DamageDNA Sequence AlterationDNA biosynthesisDNA lesionDNA replication forkDNA-Binding ProteinsDNA-Directed DNA PolymeraseDefectDevelopmentEnsureEscherichia coliExclusionFamilyFluorescence MicroscopyGenetic MaterialsGenetic TranscriptionGenome StabilityGram-Negative BacteriaGram-Positive BacteriaGrowthLabelLifeModelingMolecularMutagenesisMutationPathway interactionsPlayPolymeraseProcessProteinsRegulationRoleSS DNA BPSiteSlideStressVisualizationWorkcell growthexperimental studyinsightmolecular imagingprotein aminoacid sequenceprotein protein interactionrecruitresponsesingle molecule
项目摘要
Cells must efficiently and accurately replicate their genetic material, yet this process is challenged by the
presence of unrepaired DNA damage on the template strand. In the DNA damage tolerance pathway translesion
synthesis (TLS), specialized translesion polymerases replicate damaged DNA, promoting cell survival under
stress. Most TLS polymerases are lower fidelity than replicative DNA polymerases, and thus their activity must
be tightly regulated under normal growth conditions to maintain genome stability. Conversely, stress-induced
mutagenesis by TLS polymerases can promote cell survival under certain conditions, such as by contributing to
the development of antibiotic resistance in bacteria. The gram-negative bacterium E. coli has served as a model
species for mechanistic studies of TLS polymerase regulation, but it is not known whether the same principles
apply in other bacterial species, including the model gram-positive bacterium B. subtilis, which has two Y-family
TLS polymerases, Pol Y1 and Pol Y2. By combining biochemical and microbiological experiments with
live-cell single-molecule imaging, we will provide a comprehensive picture of the spatial organization,
dynamics, and molecular coordination of the TLS polymerases Pol Y1 and Pol Y2 in B. subtilis. This study
will reveal new insights into how DNA replication fidelity is maintained during normal growth and will broaden our
understanding of TLS and DNA damage tolerance in bacterial species beyond E. coli.
Aim 1: Determine how TLS polymerases respond to replication perturbations in B. subtilis
In E. coli, TLS polymerases are excluded from the replication fork during normal cellular growth but selectively
enriched in response to replication perturbations. It is not known, however, whether B. subtilis Pol Y1 and Pol
Y2 are regulated in a similar manner. We will use live-cell single-molecule imaging to visualize fluorescently-
labeled Pol Y1 and Pol Y2 molecules during normal replication and upon DNA damage, allowing us to determine
if and how they respond to replication perturbations.
Aim 2: Elucidate the role of the DnaN clamp in coordinating Pol Y1 and Pol Y2 activity
The bacterial replication processivity factor, the DnaN sliding clamp, interacts with a wide range of proteins
involved in DNA replication and repair through a common binding site. Pol Y1 and Pol Y2 contain clamp-binding
motifs (CBMs), short peptide sequences that bind to DnaN. We will combine biochemical and microbiological
assays with live-cell single-molecule imaging to elucidate the role of DnaN in regulating TLS in B. subtilis.
Aim 3: Determine whether and how interactions with SSB play a role in TLS polymerase recruitment
Bacterial single-stranded DNA-binding proteins (SSBs) act as a conserved binding platform for DNA replication
and repair proteins. In E. coli, the TLS polymerase Pol IV is selectively enriched at stalled replication forks
through its interaction with SSB. We will determine whether SSB plays a similar role in TLS polymerase
regulation in B. subtilis by combining biochemical binding assays with live-cell single-molecule imaging.
细胞必须有效,准确地复制其遗传物质,但此过程受到挑战
在模板链上存在未修复的DNA损伤。在DNA损伤耐度途径中
合成(TLS),专门的跨质聚合酶复制受损的DNA,促进细胞存活下的生存
压力。大多数TLS聚合酶比复制DNA聚合酶低的保真度,因此它们的活性必须
在正常生长条件下受到严格调节以维持基因组稳定性。相反,压力引起的
TLS聚合酶的诱变可以在某些条件下促进细胞存活,例如通过有助于
细菌中抗生素耐药性的发展。革兰氏阴性细菌大肠杆菌已成为模型
用于TLS聚合酶调节的机械研究的物种,但尚不清楚是否有相同的原理
应用于其他细菌种类,包括革兰氏阳性细菌枯草芽孢杆菌,该细菌具有两个Y-家庭
TLS聚合酶,Pol Y1和Pol Y2。通过将生化和微生物学实验与
活电池单分子成像,我们将提供空间组织的全面图片,
枯草芽孢杆菌中TLS聚合酶pol y1和pol y2的动力学和分子配位。这项研究
将揭示有关在正常增长期间如何保持DNA复制保真度的新见解,并将扩大我们的
对大肠杆菌以外的细菌物种的TLS和DNA损伤耐受的了解。
目标1:确定TLS聚合酶如何响应枯草芽孢杆菌的复制扰动
在大肠杆菌中,TLS聚合酶在正常细胞生长过程中被排除在复制叉中,但有选择地
响应复制扰动而富含。但是,尚不清楚枯草芽孢杆菌pol y1和pol是否
Y2以类似的方式受到调节。我们将使用活细胞单分子成像来可视化荧光 -
在正常复制期间和DNA损伤后,标记为Pol Y1和Pol Y2分子,使我们能够确定
如果以及它们如何响应复制扰动。
AIM 2:阐明DNAN夹在协调pol y1和pol y2活性中的作用
细菌复制加工性因子DNAN滑动夹与广泛的蛋白质相互作用
通过常见的结合位点参与DNA复制和修复。 pol y1和pol y2包含夹具结合
基序(CBM),与DNAN结合的短肽序列。我们将结合生化和微生物学
具有活细胞单分子成像的测定,以阐明DNAN在调节枯草芽孢杆菌中的TLS中的作用。
目标3:确定与SSB的相互作用以及如何在TLS聚合酶募集中发挥作用
细菌单链DNA结合蛋白(SSB)充当DNA复制的保守结合平台
并修复蛋白质。在大肠杆菌中,TLS聚合酶pol IV选择性地富集在停滞的复制叉处
通过与SSB的互动。我们将确定SSB是否在TLS聚合酶中起相似的作用
通过将生化结合测定与活细胞单分子成像相结合,在枯草芽孢杆菌中调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Simmons Thrall其他文献
Elizabeth Simmons Thrall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Simmons Thrall', 18)}}的其他基金
Visualizing the Bacterial Replisome at Single-Molecule Resolution
以单分子分辨率可视化细菌复制体
- 批准号:
8977855 - 财政年份:2015
- 资助金额:
$ 49.52万 - 项目类别:
相似国自然基金
柑橘内生枯草芽孢杆菌L1-21协同果实土著细菌防控柑橘绿霉病的作用机制
- 批准号:32360707
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
细菌生物膜非均匀生长的多尺度力学研究
- 批准号:11772047
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
异戊二烯共培养清洁发酵新体系的建立和蓝细菌-大肠杆菌(或枯草芽孢杆菌)相互作用关系的研究
- 批准号:31670493
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
副干酪乳杆菌与枯草芽孢杆菌等菌群种间关系以及协同合作策略的研究
- 批准号:31470537
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
一种新的细菌间基因水平转移途径? - - 枯草芽孢杆菌细胞间遗传重组过程的基本特性研究及机理揭示
- 批准号:31270145
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms and regulation of replication, the cell cycle, gene expression, and horizontal gene transfer in prokaryotes, focusing on Bacillus subtilis
原核生物复制、细胞周期、基因表达和水平基因转移的机制和调控,重点关注枯草芽孢杆菌
- 批准号:
10792219 - 财政年份:2023
- 资助金额:
$ 49.52万 - 项目类别:
Mechanisms and regulation of replication, the cell cycle, gene expression, and horizontal gene transfer in prokaryotes, focusing on Bacillus subtilis.
原核生物复制、细胞周期、基因表达和水平基因转移的机制和调控,重点关注枯草芽孢杆菌。
- 批准号:
10552390 - 财政年份:2023
- 资助金额:
$ 49.52万 - 项目类别:
Structural and functional basis of bacterial transcriptional regulation
细菌转录调控的结构和功能基础
- 批准号:
10712023 - 财政年份:2023
- 资助金额:
$ 49.52万 - 项目类别:
Functional genomics of hypothetical genes in Gram-positive bacteria
革兰氏阳性菌假设基因的功能基因组学
- 批准号:
10790885 - 财政年份:2023
- 资助金额:
$ 49.52万 - 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10352579 - 财政年份:2022
- 资助金额:
$ 49.52万 - 项目类别: