Improving Heart Failure Risk Stratification in the ED
改善急诊室的心力衰竭风险分层
基本信息
- 批准号:7842246
- 负责人:
- 金额:$ 26.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAdmission activityAffectAftercareAlgorithmsBedsBehaviorBiometryCardiologyCaringCessation of lifeCollaborationsComplexCritical CareDataData SetDiagnosisEffectivenessEmergency CareEmergency MedicineEmergency SituationEnvironmentEvaluationEventGuidelinesHealthcareHealthcare SystemsHeart failureHospitalizationHospitalsHourInpatientsLeadMeasuresMethodologyModelingMonitorObservational StudyOutcomeOutpatientsPatient CarePatient DischargePatientsPhysiciansPopulationPrimary Health CareProbabilityProviderResearch PersonnelResearch TrainingResourcesRiskRisk FactorsSelection BiasSourceStatistical MethodsStratificationSymptomsTestingTranslatingTreatment outcomeVisitWorkacute coronary syndromebaseclinical applicationclinical practiceclinically relevantcostdatabase designdesignefficacy testinghigh riskimprovedinnovationmathematical modelnovelpatient populationprimary outcomeprogramsprospectivesafety testingsecondary outcomesocioeconomicstool
项目摘要
DESCRIPTION (provided by applicant): A critical challenge facing emergency department (ED) physicians is how best to manage patients presenting with symptoms of heart failure. Currently, most patients being evaluated for heart failure are admitted to the hospital, yet not all of these patients warrant such intensive treatment, and up to 50% of these admissions could be avoided. Improving the ability of the emergency physician to effectively and safely manage low-risk patients is essential to avoid unnecessary hospitalizations. We propose developing a decision tool derived from prospectively gathered ED data that will predict risk for inpatient or outpatient death and serious in-hospital or out-of-hospital complications. Further, the proposed project will validate the usefulness and generalizability of this decision tool in three different ED environments across racially and socioeconomically diverse patient populations. To develop our decision tool, over 100 variables routinely available to the emergency physician within the first two hours of ED presentation will be considered for inclusion in a statistical risk model. Unlike exisitng models using inpatient data, these measures are representative of actual clinical practice and routinely used to decide a patient's disposition. We will collect standardized data during a patient's evaluation for heart failure. Relying on chart review or large dataset analyses can lead to missing and inconsistent data. We will include all patients evaluated for heart failure regardless of final diagnosis, thus avoiding selection bias inherent in models based on patients with a definitive diagnosis. A fundamental innovation we propose is a tool using 5-day outcomes for primary analyses, and 30-day outcomes for secondary analyses. This overcomes the limitation of 30-day outcome models that are highly dependent on unpredictable, post-visit patient and provider behavior. Another novel aspect of the proposed project is the combining of expertise in emergency medicine, cardiology, and biostatistics to accurately assign post-treatment outcomes to acute presentations. Results will be translated into an algorithm that will be disseminated worldwide. This is the first step toward achieving our broad objective of appropriate allocation of hospital resources to reduce costs of heart failure care. In collaboration with outcomes and effectiveness researchers, we plan to conduct further studies to test the efficacy of our risk model.
描述(由申请人提供):急诊科 (ED) 医生面临的一个关键挑战是如何最好地管理出现心力衰竭症状的患者。目前,大多数接受心力衰竭评估的患者都会入院,但并非所有这些患者都需要如此强化治疗,并且高达 50% 的入院患者是可以避免的。提高急诊医生有效、安全地管理低风险患者的能力对于避免不必要的住院治疗至关重要。我们建议开发一种基于前瞻性收集的急诊数据的决策工具,该工具将预测住院或门诊死亡以及严重的院内或院外并发症的风险。此外,拟议的项目将验证该决策工具在跨种族和社会经济多样化患者群体的三种不同 ED 环境中的有用性和普遍性。为了开发我们的决策工具,急诊医生在急诊科就诊的前两个小时内常规可用的 100 多个变量将被考虑纳入统计风险模型。与使用住院患者数据的现有模型不同,这些测量代表了实际的临床实践,并且通常用于决定患者的处置。我们将在患者评估心力衰竭期间收集标准化数据。依赖图表审查或大型数据集分析可能会导致数据丢失和不一致。无论最终诊断如何,我们都将纳入所有接受心力衰竭评估的患者,从而避免基于明确诊断的患者的模型中固有的选择偏差。我们提出的一项根本性创新是使用 5 天结果进行主要分析,使用 30 天结果进行二次分析的工具。这克服了 30 天结果模型的局限性,该模型高度依赖于不可预测的就诊后患者和提供者的行为。该项目的另一个新颖之处是结合了急诊医学、心脏病学和生物统计学的专业知识,以准确地将治疗后结果分配给急性表现。结果将被转化为将在全球范围内传播的算法。这是实现我们适当分配医院资源以降低心力衰竭护理成本的广泛目标的第一步。我们计划与结果和有效性研究人员合作进行进一步的研究,以测试我们的风险模型的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALAN B STORROW其他文献
ALAN B STORROW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALAN B STORROW', 18)}}的其他基金
The Vanderbilt Emergency Care Research Training Program
范德比尔特紧急护理研究培训计划
- 批准号:
9765367 - 财政年份:2016
- 资助金额:
$ 26.14万 - 项目类别:
The Vanderbilt Emergency Care Research Training Program
范德比尔特紧急护理研究培训计划
- 批准号:
9973108 - 财政年份:2016
- 资助金额:
$ 26.14万 - 项目类别:
The Vanderbilt Emergency Care Research Training Program
范德比尔特紧急护理研究培训计划
- 批准号:
9162711 - 财政年份:2016
- 资助金额:
$ 26.14万 - 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
- 批准号:
8164529 - 财政年份:2011
- 资助金额:
$ 26.14万 - 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
- 批准号:
8270457 - 财政年份:2011
- 资助金额:
$ 26.14万 - 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
- 批准号:
8502546 - 财政年份:2011
- 资助金额:
$ 26.14万 - 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
- 批准号:
8715391 - 财政年份:2011
- 资助金额:
$ 26.14万 - 项目类别:
Improving Heart Failure Risk Stratification in the ED
改善急诊室的心力衰竭风险分层
- 批准号:
7248177 - 财政年份:2007
- 资助金额:
$ 26.14万 - 项目类别:
Improving Heart Failure Risk Stratification in the ED
改善急诊室的心力衰竭风险分层
- 批准号:
7426917 - 财政年份:2007
- 资助金额:
$ 26.14万 - 项目类别:
Improving Heart Failure Risk Stratification in the ED
改善急诊室的心力衰竭风险分层
- 批准号:
7793566 - 财政年份:2007
- 资助金额:
$ 26.14万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Northern California Acute Care Research Consortium (NORCARES)
北加州急症护理研究联盟 (NORCARES)
- 批准号:
10552463 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
- 批准号:
10731651 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
- 批准号:
10584217 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别: