NEURAL NETWORKS FOR SPEECH PERCEPTION IN NOISE
噪声中语音感知的神经网络
基本信息
- 批准号:7850247
- 负责人:
- 金额:$ 16.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-17 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAmericanAreaAuditoryBiological Neural NetworksBrainBrain regionBroca&aposs areaCognitiveCommunicationComplexComprehensionCuesDevicesDiagnosisDrug FormulationsEnvironmentFoundationsFrequenciesFunctional Magnetic Resonance ImagingHearingHearing AidsHumanIllusionsInsula of ReilKnowledgeLeftLinguisticsMediatingMediationMethodsMovementNeurobiologyNoiseOral cavityParietalPlayProcessPsychophysicsPublic HealthResearchResearch PersonnelRestaurantsRoleScientistSecureSensorySignal TransductionSocial isolationSpecific qualifier valueSpecificitySpeechSpeech IntelligibilitySpeech PerceptionSpeech SoundStimulusStructure of superior temporal sulcusTemporal LobeTestingTimeVisualVisual MotionVoiceWorkbasedepressiondesignhearing impairmentimprovedinnovationlexicalmembermultisensoryprogramsrelating to nervous systemrepairedresearch studyrestorationselective attentionsound
项目摘要
This research addresses the neural bases of speech perception in noisy environments. With its singular role
in communication, speech is perhaps the most important everyday stimulus for human beings. Yet rarely
does speech occur under pristine conditions; competing voices, reverberations, and other environmental
sounds typically corrupt the signal. This poses a continual challenge for normal listeners and especially for
those with hearing loss. Among the 30 million Americans with hearing loss, many suffer depression and
social isolation because of their difficulty communicating. In the half-century since the original formulation of
the "cocktail party effect", scientists have established three key perceptual/cognitive factors that improve
speech intelligibility in a competing background: acoustic cues, audiovisual integration (voice + mouth
movements), and linguistic context. However, little is known about how these mechanisms are implemented
in the brain, particularly at the level of large-scale functional neural networks. The proposed research uses
functional magnetic resonance imaging (fMRI) integrated with psychophysics to address the three factors
that determine intelligibility. Innovative neural network analyses test how interactions among brain regions
accommodate degraded speech and improve comprehension. Our specific AIMS are to identify the neural
networks mediating speech perception in noise, when intelligibility depends on: 1) Acoustic Cues, 2)
Audiovisual Integration, and 3) Linguistic Context. This research program comprises a multipronged and
highly cohesive body of work that will help secure our understanding of speech perception to its
neurobiological foundations.
Relevance to public health:
We study how our brains understand speech in a noisy background, such as at a restaurant, ballgame, or
office. Research like this may someday help to design better hearing aids and similar devices. It may also
result in more effective listening strategies, both for those with healthy hearing and especially for those with
hearing loss.
这项研究解决了噪声环境中语音感知的神经基础。以其独特的作用
在交流中,言语也许是人类最重要的日常刺激。但很少
言语是否在原始条件下发生?竞争的声音、混响和其他环境
声音通常会破坏信号。这对普通听众,尤其是普通听众提出了持续的挑战。
那些有听力损失的人。在 3000 万患有听力损失的美国人中,许多人患有抑郁症和
由于沟通困难而被社会孤立。自最初提出以来的半个世纪
通过“鸡尾酒会效应”,科学家们确定了三个关键的感知/认知因素,可以改善
竞争背景下的语音清晰度:声音提示、视听整合(声音+嘴巴)
动作)和语言环境。然而,人们对这些机制如何实施知之甚少
在大脑中,特别是在大规模功能神经网络的水平上。拟议的研究用途
功能磁共振成像 (fMRI) 与心理物理学相结合,解决这三个因素
决定清晰度。创新的神经网络分析测试大脑区域之间的相互作用
适应退化的言语并提高理解力。我们的具体目标是识别神经
当清晰度取决于:1) 声学提示,2) 时,网络调节噪声中的语音感知
视听整合,以及 3) 语言背景。该研究计划包括多管齐下的
高度凝聚力的工作将有助于确保我们对语音感知的理解
神经生物学基础。
与公共卫生的相关性:
我们研究我们的大脑如何在嘈杂的背景下理解语音,例如在餐馆、球赛或
办公室。像这样的研究有一天可能有助于设计更好的助听器和类似设备。也可能是
为那些听力健康的人,特别是那些有听力障碍的人带来更有效的听力策略
听力损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEE M MILLER其他文献
LEE M MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEE M MILLER', 18)}}的其他基金
Network interactions in crossmodal speech perception
跨模态语音感知中的网络交互
- 批准号:
6649726 - 财政年份:2002
- 资助金额:
$ 16.5万 - 项目类别:
Network interactions in crossmodal speech perception
跨模态语音感知中的网络交互
- 批准号:
6584231 - 财政年份:2002
- 资助金额:
$ 16.5万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
- 批准号:
10662053 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Improving communication outcomes in children with cleft palate in rural India
改善印度农村地区腭裂儿童的沟通效果
- 批准号:
10741579 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Optimizing Ultrasound Regimens for Achieving Cartilage Repair
优化超声治疗方案以实现软骨修复
- 批准号:
10570858 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别: