Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
基本信息
- 批准号:10707418
- 负责人:
- 金额:$ 41.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoV3-DimensionalAffinityAlgorithmsAmino Acid SubstitutionAmino AcidsAutomobile DrivingBindingBinding SitesBiologicalBiophysicsCollaborationsComputer ModelsComputersCoupledCouplingCyclic AMP Receptor ProteinDNA BindingDataDevelopmentDiseaseDistalEquilibriumEscherichia coliEventEvolutionExhibitsGenetic EpistasisGenetic VariationGoalsHomologous ProteinHuman GeneticsImpairmentLactoseLigand BindingLigandsMachine LearningMeasuresMedicineMethodsMissense MutationModelingMolecularMolecular GeneticsMotionMutationOpen Reading FramesOutcomePhenotypePositioning AttributePropertyProtein DynamicsProtein EngineeringProteinsPublishingRecording of previous eventsRepressor ProteinsResearchRestSARS-CoV-2 proteaseSamplingSiteSpecificitySystemTechnologyTestingVariantViralViral Proteinscombinatorialcomputerized toolsexperimental studyflexibilityfunctional outcomesimprovedmolecular dynamicsmolecular modelingnetwork modelsnoveloutcome predictionpersonalized medicinepredictive modelingpredictive toolsprotein functionresponsestructural biologysuccess
项目摘要
Summary
Advanced sequencing technologies provide ever-increasing quantities of data about human genetic variation
and viral evolution. However, predicting the outcomes of missense mutations in protein coding regions remains
a challenge, creating a bottleneck in discriminating biomedically-relevant variants from neutral ones (with little or
no effect on phenotype). In particular, outcome predictions are very poor when a missense mutation alters amino
acids that are located far from a protein’s functional/binding sites. These shortcomings also impair protein
design. We propose to ameliorate these needs by developing quantitative, computational models that predict
the effects of long-distance substitutions on binding interactions. To that end, we have developed an approach
in which (1) a protein’s collective motions are first revealed by molecular dynamics simulations and then (2) force
perturbation is used to disrupt the protein’s equilibrium, thereby approximating the effects of ligand binding. We
have used this approach in published studies and preliminary data to illuminate the propagation of dynamical
changes through a protein’s anisotropic network of interactions. Results suggest that changes in these dynamic
networks have crucial effects on protein function, thereby leading to our central hypothesis: The effects of long-
distance substitutions on ligand binding are emergent properties of changes in the protein’s dynamically-coupled,
anisotropic network. The goal of the current proposal is to extend this computational approach to develop
models that predict: (Aim 1) the magnitudes of binding affinity changes arising from long-distance, modulating
substitutions; (Aim 2) which pairs of non-contact substitutions have non-additive effects on binding affinities
(“epistasis”); and (Aim 3) which long-distance positions contribute to ligand specificity. To that end, we have a
well-established collaboration that allows us to iterate between computational predictions and experimental
testing, enabling development of quantitative models with computed accuracies. Our preliminary studies used
the well-characterized E. coli lactose repressor protein (LacI), for which experimental results validate our
preliminary computational models and provide specific hypotheses for Aims 1-3. Additional model proteins will
be used to show the generality of our approach and will include the LacI homolog PurR, the cAMP receptor
protein, and a viral protease SARS-Cov2-Mpro. Results will be used to provide novel computational tools for
predicting functional outcomes of long-distance substitutions. The success of this project will catalyze research
at the interface of protein structural biology, molecular genetics, evolution and medicine by advancing the
mechanistic understanding of how substitutions distal from functional sites alter ligand binding.
概括
先进的测序技术提供了越来越多的有关人类遗传变异的数据
然而,预测蛋白质编码区错义突变的结果仍然存在。
一个挑战,在区分生物医学相关变体和中性变体(很少或很少)方面造成了瓶颈
特别是,当错义突变改变氨基时,结果预测非常差。
远离蛋白质功能/结合位点的酸这些缺点也会损害蛋白质。
我们建议通过开发预测的定量计算模型来改善这些需求。
为此,我们开发了一种方法。
其中(1)首先通过分子动力学模拟揭示蛋白质的集体运动,然后(2)力
扰动用于破坏蛋白质的平衡,从而近似配体结合的效果。
在已发表的研究和初步数据中使用了这种方法来阐明动力学的传播
通过蛋白质的各向异性相互作用网络发生变化结果表明这些动态的变化。
网络对蛋白质功能具有至关重要的影响,从而得出我们的中心假设:长期的影响
配体结合上的距离取代是蛋白质动态耦合变化的新兴特性,
当前提案的目标是扩展这种计算方法来开发。
模型预测:(目标 1)长距离调节引起的结合亲和力变化的幅度
取代;(目标 2)哪对非接触取代对结合亲和力具有非加性效应
(“上位性”);和(目标 3)哪些长距离位置有助于配体特异性。
完善的合作使我们能够在计算预测和实验之间进行迭代
测试,从而能够开发具有计算精度的定量模型。
充分表征的大肠杆菌乳糖阻遏蛋白 (LacI),实验结果验证了我们的研究
初步计算模型并为目标 1-3 提供具体假设。
用于展示我们方法的通用性,并将包括 LacI 同源物 PurR,即 cAMP 受体
蛋白质和病毒蛋白酶 SARS-Cov2-Mpro 结果将用于提供新的计算工具。
预测长距离替代的功能结果将促进研究。
通过推进蛋白质结构生物学、分子遗传学、进化论和医学的交叉
对远离功能位点的取代如何改变配体结合的机制理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sefika Banu Ozkan其他文献
Sefika Banu Ozkan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sefika Banu Ozkan', 18)}}的其他基金
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 41.01万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 41.01万 - 项目类别:
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
- 批准号:52372236
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
- 批准号:12304019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
- 批准号:
10698958 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
- 批准号:
10698958 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
- 批准号:
10560883 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
- 批准号:
10707983 - 财政年份:2022
- 资助金额:
$ 41.01万 - 项目类别:
Developing Broad-Spectrum Antivirals Targeting Coronavirus Replicase and Helicase
开发针对冠状病毒复制酶和解旋酶的广谱抗病毒药物
- 批准号:
10513685 - 财政年份:2022
- 资助金额:
$ 41.01万 - 项目类别: